Skip to main content
Genetics logoLink to Genetics
. 2004 Mar;166(3):1187–1197. doi: 10.1534/genetics.166.3.1187

The Saccharomyces cerevisiae recombination enhancer biases recombination during interchromosomal mating-type switching but not in interchromosomal homologous recombination.

Peter Houston 1, Peter J Simon 1, James R Broach 1
PMCID: PMC1470794  PMID: 15082540

Abstract

Haploid Saccharomyces can change mating type through HO-endonuclease cleavage of an expressor locus, MAT, followed by gene conversion using one of two repository loci, HML or HMR, as donor. The mating type of a cell dictates which repository locus is used as donor, with a cells using HML and alpha cells using HMR. This preference is established in part by RE, a locus on the left arm of chromosome III that activates the surrounding region, including HML, for recombination in a cells, an activity suppressed by alpha 2 protein in alpha cells. We have examined the ability of RE to stimulate different forms of interchromosomal recombination. We found that RE exerted an effect on interchromosomal mating-type switching and on intrachromosomal homologous recombination but not on interchromosomal homologous recombination. Also, even in the absence of RE, MAT alpha still influenced donor preference in interchromosomal mating-type switching, supporting a role of alpha 2 in donor preference independent of RE. These results suggest a model in which RE affects competition between productive and nonproductive recombination outcomes. In interchromosome gene conversion, RE enhances both productive and nonproductive pathways, whereas in intrachromosomal gene conversion and mating-type switching, RE enhances only the productive pathway.

Full Text

The Full Text of this article is available as a PDF (194.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baudin A., Ozier-Kalogeropoulos O., Denouel A., Lacroute F., Cullin C. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 1993 Jul 11;21(14):3329–3330. doi: 10.1093/nar/21.14.3329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Klar A. J., Hicks J. B., Strathern J. N. Directionality of yeast mating-type interconversion. Cell. 1982 Mar;28(3):551–561. doi: 10.1016/0092-8674(82)90210-0. [DOI] [PubMed] [Google Scholar]
  3. Long R. M., Singer R. H., Meng X., Gonzalez I., Nasmyth K., Jansen R. P. Mating type switching in yeast controlled by asymmetric localization of ASH1 mRNA. Science. 1997 Jul 18;277(5324):383–387. doi: 10.1126/science.277.5324.383. [DOI] [PubMed] [Google Scholar]
  4. Nasmyth K., Jansen R. P. The cytoskeleton in mRNA localization and cell differentiation. Curr Opin Cell Biol. 1997 Jun;9(3):396–400. doi: 10.1016/s0955-0674(97)80013-0. [DOI] [PubMed] [Google Scholar]
  5. Nasmyth K. Regulating the HO endonuclease in yeast. Curr Opin Genet Dev. 1993 Apr;3(2):286–294. doi: 10.1016/0959-437x(93)90036-o. [DOI] [PubMed] [Google Scholar]
  6. Simon Peter, Houston Peter, Broach James. Directional bias during mating type switching in Saccharomyces is independent of chromosomal architecture. EMBO J. 2002 May 1;21(9):2282–2291. doi: 10.1093/emboj/21.9.2282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Strathern J. N., Herskowitz I. Asymmetry and directionality in production of new cell types during clonal growth: the switching pattern of homothallic yeast. Cell. 1979 Jun;17(2):371–381. doi: 10.1016/0092-8674(79)90163-6. [DOI] [PubMed] [Google Scholar]
  8. Strathern J. N., Klar A. J., Hicks J. B., Abraham J. A., Ivy J. M., Nasmyth K. A., McGill C. Homothallic switching of yeast mating type cassettes is initiated by a double-stranded cut in the MAT locus. Cell. 1982 Nov;31(1):183–192. doi: 10.1016/0092-8674(82)90418-4. [DOI] [PubMed] [Google Scholar]
  9. Sun Kaiming, Coïc Eric, Zhou Zhiqi, Durrens Pascal, Haber James E. Saccharomyces forkhead protein Fkh1 regulates donor preference during mating-type switching through the recombination enhancer. Genes Dev. 2002 Aug 15;16(16):2085–2096. doi: 10.1101/gad.994902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Szeto L., Broach J. R. Role of alpha2 protein in donor locus selection during mating type interconversion. Mol Cell Biol. 1997 Feb;17(2):751–759. doi: 10.1128/mcb.17.2.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Szeto L., Fafalios M. K., Zhong H., Vershon A. K., Broach J. R. Alpha2p controls donor preference during mating type interconversion in yeast by inactivating a recombinational enhancer of chromosome III. Genes Dev. 1997 Aug 1;11(15):1899–1911. doi: 10.1101/gad.11.15.1899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Tercero José Antonio, Longhese Maria Pia, Diffley John F. X. A central role for DNA replication forks in checkpoint activation and response. Mol Cell. 2003 May;11(5):1323–1336. doi: 10.1016/s1097-2765(03)00169-2. [DOI] [PubMed] [Google Scholar]
  13. Volkert F. C., Broach J. R. Site-specific recombination promotes plasmid amplification in yeast. Cell. 1986 Aug 15;46(4):541–550. doi: 10.1016/0092-8674(86)90879-2. [DOI] [PubMed] [Google Scholar]
  14. Weiler K. S., Broach J. R. Donor locus selection during Saccharomyces cerevisiae mating type interconversion responds to distant regulatory signals. Genetics. 1992 Dec;132(4):929–942. doi: 10.1093/genetics/132.4.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Weiler K. S., Szeto L., Broach J. R. Mutations affecting donor preference during mating type interconversion in Saccharomyces cerevisiae. Genetics. 1995 Apr;139(4):1495–1510. doi: 10.1093/genetics/139.4.1495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Weiss K., Simpson R. T. Cell type-specific chromatin organization of the region that governs directionality of yeast mating type switching. EMBO J. 1997 Jul 16;16(14):4352–4360. doi: 10.1093/emboj/16.14.4352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wu C., Weiss K., Yang C., Harris M. A., Tye B. K., Newlon C. S., Simpson R. T., Haber J. E. Mcm1 regulates donor preference controlled by the recombination enhancer in Saccharomyces mating-type switching. Genes Dev. 1998 Jun 1;12(11):1726–1737. doi: 10.1101/gad.12.11.1726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wu T. C., Lichten M. Factors that affect the location and frequency of meiosis-induced double-strand breaks in Saccharomyces cerevisiae. Genetics. 1995 May;140(1):55–66. doi: 10.1093/genetics/140.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wu T. C., Lichten M. Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science. 1994 Jan 28;263(5146):515–518. doi: 10.1126/science.8290959. [DOI] [PubMed] [Google Scholar]
  20. Wu X., Haber J. E. A 700 bp cis-acting region controls mating-type dependent recombination along the entire left arm of yeast chromosome III. Cell. 1996 Oct 18;87(2):277–285. doi: 10.1016/s0092-8674(00)81345-8. [DOI] [PubMed] [Google Scholar]
  21. Wu X., Haber J. E. MATa donor preference in yeast mating-type switching: activation of a large chromosomal region for recombination. Genes Dev. 1995 Aug 1;9(15):1922–1932. doi: 10.1101/gad.9.15.1922. [DOI] [PubMed] [Google Scholar]
  22. Wu X., Moore J. K., Haber J. E. Mechanism of MAT alpha donor preference during mating-type switching of Saccharomyces cerevisiae. Mol Cell Biol. 1996 Feb;16(2):657–668. doi: 10.1128/mcb.16.2.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wu X., Wu C., Haber J. E. Rules of donor preference in saccharomyces mating-type gene switching revealed by a competition assay involving two types of recombination. Genetics. 1997 Oct;147(2):399–407. doi: 10.1093/genetics/147.2.399. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES