Skip to main content
Genetics logoLink to Genetics
. 2004 Mar;166(3):1199–1214. doi: 10.1534/genetics.166.3.1199

Meiotic exchange and segregation in female mice heterozygous for paracentric inversions.

Kara E Koehler 1, Elise A Millie 1, Jonathan P Cherry 1, Stefanie E Schrump 1, Terry J Hassold 1
PMCID: PMC1470797  PMID: 15082541

Abstract

Inversion heterozygosity has long been noted for its ability to suppress the transmission of recombinant chromosomes, as well as for altering the frequency and location of recombination events. In our search for meiotic situations with enrichment for nonexchange and/or single distal-exchange chromosome pairs, exchange configurations that are at higher risk for nondisjunction in humans and other organisms, we examined both exchange and segregation patterns in 2728 oocytes from mice heterozygous for paracentric inversions, as well as controls. We found dramatic alterations in exchange position in the heterozygotes, including an increased frequency of distal exchanges for two of the inversions studied. However, nondisjunction was not significantly increased in oocytes heterozygous for any inversion. When data from all inversion heterozygotes were pooled, meiotic nondisjunction was slightly but significantly higher in inversion heterozygotes (1.2%) than in controls (0%), although the frequency was still too low to justify the use of inversion heterozygotes as a model of human nondisjunction.

Full Text

The Full Text of this article is available as a PDF (397.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Afshar K., Scholey J., Hawley R. S. Identification of the chromosome localization domain of the Drosophila nod kinesin-like protein. J Cell Biol. 1995 Nov;131(4):833–843. doi: 10.1083/jcb.131.4.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson L. K., Reeves A., Webb L. M., Ashley T. Distribution of crossing over on mouse synaptonemal complexes using immunofluorescent localization of MLH1 protein. Genetics. 1999 Apr;151(4):1569–1579. doi: 10.1093/genetics/151.4.1569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anderson Lorinda K., Doyle Gregory G., Brigham Brian, Carter Jenna, Hooker Kristina D., Lai Ann, Rice Mindy, Stack Stephen M. High-resolution crossover maps for each bivalent of Zea mays using recombination nodules. Genetics. 2003 Oct;165(2):849–865. doi: 10.1093/genetics/165.2.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ashley T., Cacheiro N. L., Russell L. B., Ward D. C. Molecular characterization of a pericentric inversion in mouse chromosome 8 implicates telomeres as promoters of meiotic recombination. Chromosoma. 1993 Jan;102(2):112–120. doi: 10.1007/BF00356028. [DOI] [PubMed] [Google Scholar]
  5. Ashley T. G-band position effects on meiotic synapsis and crossing over. Genetics. 1988 Feb;118(2):307–317. doi: 10.1093/genetics/118.2.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Baker S. M., Plug A. W., Prolla T. A., Bronner C. E., Harris A. C., Yao X., Christie D. M., Monell C., Arnheim N., Bradley A. Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nat Genet. 1996 Jul;13(3):336–342. doi: 10.1038/ng0796-336. [DOI] [PubMed] [Google Scholar]
  7. Barlow A. L., Hultén M. A. Crossing over analysis at pachytene in man. Eur J Hum Genet. 1998 Jul-Aug;6(4):350–358. doi: 10.1038/sj.ejhg.5200200. [DOI] [PubMed] [Google Scholar]
  8. Bean C. J., Hunt P. A., Millie E. A., Hassold T. J. Analysis of a malsegregating mouse Y chromosome: evidence that the earliest cleavage divisions of the mammalian embryo are non-disjunction-prone. Hum Mol Genet. 2001 Apr 15;10(9):963–972. doi: 10.1093/hmg/10.9.963. [DOI] [PubMed] [Google Scholar]
  9. Borodin P. M., Gorlov I. P., Ladygina TYu Synapsis in single and double heterozygotes for partially overlapping inversions in chromosome 1 of the house mouse. Chromosoma. 1990 Sep;99(5):365–370. doi: 10.1007/BF01731725. [DOI] [PubMed] [Google Scholar]
  10. Broman K. W., Murray J. C., Sheffield V. C., White R. L., Weber J. L. Comprehensive human genetic maps: individual and sex-specific variation in recombination. Am J Hum Genet. 1998 Sep;63(3):861–869. doi: 10.1086/302011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Carpenter A. T. A meiotic mutant defective in distributive disjunction in Drosophila melanogaster. Genetics. 1973 Mar;73(3):393–428. doi: 10.1093/genetics/73.3.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chandley A. C. A pachytene analysis of two male-fertile paracentric inversions in chromosome 1 of the mouse and in the male-sterile double heterozygote. Chromosoma. 1982;85(1):127–135. doi: 10.1007/BF00344599. [DOI] [PubMed] [Google Scholar]
  13. Davisson M. T., Roderick T. H. Chromosomal banding patterns of two paracentric inversions in mice. Cytogenet Cell Genet. 1973;12(6):398–403. doi: 10.1159/000130482. [DOI] [PubMed] [Google Scholar]
  14. Dernburg A. F., Sedat J. W., Hawley R. S. Direct evidence of a role for heterochromatin in meiotic chromosome segregation. Cell. 1996 Jul 12;86(1):135–146. doi: 10.1016/s0092-8674(00)80084-7. [DOI] [PubMed] [Google Scholar]
  15. Dietrich W. F., Miller J., Steen R., Merchant M. A., Damron-Boles D., Husain Z., Dredge R., Daly M. J., Ingalls K. A., O'Connor T. J. A comprehensive genetic map of the mouse genome. Nature. 1996 Mar 14;380(6570):149–152. doi: 10.1038/380149a0. [DOI] [PubMed] [Google Scholar]
  16. Dresser M. E., Ewing D. J., Harwell S. N., Coody D., Conrad M. N. Nonhomologous synapsis and reduced crossing over in a heterozygous paracentric inversion in Saccharomyces cerevisiae. Genetics. 1994 Nov;138(3):633–647. doi: 10.1093/genetics/138.3.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Evans E. P., Phillips R. J. Inversion heterozygosity and the origin of XO daughters of Bpa/+female mice. Nature. 1975 Jul 3;256(5512):40–41. doi: 10.1038/256040a0. [DOI] [PubMed] [Google Scholar]
  18. Froenicke Lutz, Anderson Lorinda K., Wienberg Johannes, Ashley Terry. Male mouse recombination maps for each autosome identified by chromosome painting. Am J Hum Genet. 2002 Nov 12;71(6):1353–1368. doi: 10.1086/344714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gabriel-Robez O., Rumpler Y. The meiotic pairing behaviour in human spermatocytes carrier of chromosome anomalies and their repercussions on reproductive fitness. I: Inversions and insertions. A European collaborative study. Ann Genet. 1994;37(1):3–10. [PubMed] [Google Scholar]
  20. Gorlov I. P., Borodin P. M. Recombination in single and double heterozygotes for two partially overlapping inversions in chromosome 1 of the house mouse. Heredity (Edinb) 1995 Aug;75(Pt 2):113–125. doi: 10.1038/hdy.1995.114. [DOI] [PubMed] [Google Scholar]
  21. Gorlov I. P., Ladygina T Y. u., Serov O. L., Borodin P. M. Positional control of chiasma distribution in the house mouse. Chiasma distribution in mice homozygous and heterozygous for an inversion in chromosome 1. Heredity (Edinb) 1991 Jun;66(Pt 3):453–458. doi: 10.1038/hdy.1991.55. [DOI] [PubMed] [Google Scholar]
  22. Haldi M. L., Strickland C., Lim P., VanBerkel V., Chen X., Noya D., Korenberg J. R., Husain Z., Miller J., Lander E. S. A comprehensive large-insert yeast artificial chromosome library for physical mapping of the mouse genome. Mamm Genome. 1996 Oct;7(10):767–769. doi: 10.1007/s003359900228. [DOI] [PubMed] [Google Scholar]
  23. Hassold T., Hunt P. To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet. 2001 Apr;2(4):280–291. doi: 10.1038/35066065. [DOI] [PubMed] [Google Scholar]
  24. Hawley R. S., Irick H., Zitron A. E., Haddox D. A., Lohe A., New C., Whitley M. D., Arbel T., Jang J., McKim K. There are two mechanisms of achiasmate segregation in Drosophila females, one of which requires heterochromatic homology. Dev Genet. 1992;13(6):440–467. doi: 10.1002/dvg.1020130608. [DOI] [PubMed] [Google Scholar]
  25. Hodgkin J., Horvitz H. R., Brenner S. Nondisjunction Mutants of the Nematode CAENORHABDITIS ELEGANS. Genetics. 1979 Jan;91(1):67–94. doi: 10.1093/genetics/91.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hultén M. A., Tease C., Lawrie N. M. Chiasma-based genetic map of the mouse X chromosome. Chromosoma. 1995 Nov;104(3):223–227. doi: 10.1007/BF00352187. [DOI] [PubMed] [Google Scholar]
  27. Hunt P., LeMaire R., Embury P., Sheean L., Mroz K. Analysis of chromosome behavior in intact mammalian oocytes: monitoring the segregation of a univalent chromosome during female meiosis. Hum Mol Genet. 1995 Nov;4(11):2007–2012. doi: 10.1093/hmg/4.11.2007. [DOI] [PubMed] [Google Scholar]
  28. Hunt Patricia A., Hassold Terry J. Sex matters in meiosis. Science. 2002 Jun 21;296(5576):2181–2183. doi: 10.1126/science.1071907. [DOI] [PubMed] [Google Scholar]
  29. Jaarola M., Martin R. H., Ashley T. Direct evidence for suppression of recombination within two pericentric inversions in humans: a new sperm-FISH technique. Am J Hum Genet. 1998 Jul;63(1):218–224. doi: 10.1086/301900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kile Benjamin T., Hentges Kathryn E., Clark Amander T., Nakamura Hisashi, Salinger Andrew P., Liu Bin, Box Neil, Stockton David W., Johnson Randy L., Behringer Richard R. Functional genetic analysis of mouse chromosome 11. Nature. 2003 Sep 4;425(6953):81–86. doi: 10.1038/nature01865. [DOI] [PubMed] [Google Scholar]
  31. Koehler K. E., Boulton C. L., Collins H. E., French R. L., Herman K. C., Lacefield S. M., Madden L. D., Schuetz C. D., Hawley R. S. Spontaneous X chromosome MI and MII nondisjunction events in Drosophila melanogaster oocytes have different recombinational histories. Nat Genet. 1996 Dec;14(4):406–414. doi: 10.1038/ng1296-406. [DOI] [PubMed] [Google Scholar]
  32. Koehler K. E., Hassold T. J. Human aneuploidy: lessons from achiasmate segregation in Drosophila melanogaster. Ann Hum Genet. 1998 Nov;62(Pt 6):467–479. doi: 10.1046/j.1469-1809.1998.6260467.x. [DOI] [PubMed] [Google Scholar]
  33. Koehler Kara E., Cherry Jonathan P., Lynn Audrey, Hunt Patricia A., Hassold Terry J. Genetic control of mammalian meiotic recombination. I. Variation in exchange frequencies among males from inbred mouse strains. Genetics. 2002 Sep;162(1):297–306. doi: 10.1093/genetics/162.1.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Koehler Kara E., Millie Elise A., Cherry Jonathan P., Burgoyne Paul S., Evans Edward P., Hunt Patricia A., Hassold Terry J. Sex-specific differences in meiotic chromosome segregation revealed by dicentric bridge resolution in mice. Genetics. 2002 Nov;162(3):1367–1379. doi: 10.1093/genetics/162.3.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Korenberg J. R., Chen X. N., Devon K. L., Noya D., Oster-Granite M. L., Birren B. W. Mouse molecular cytogenetic resource: 157 BACs link the chromosomal and genetic maps. Genome Res. 1999 May;9(5):514–523. [PMC free article] [PubMed] [Google Scholar]
  36. Lamb N. E., Feingold E., Savage A., Avramopoulos D., Freeman S., Gu Y., Hallberg A., Hersey J., Karadima G., Pettay D. Characterization of susceptible chiasma configurations that increase the risk for maternal nondisjunction of chromosome 21. Hum Mol Genet. 1997 Sep;6(9):1391–1399. doi: 10.1093/hmg/6.9.1391. [DOI] [PubMed] [Google Scholar]
  37. Lamb N. E., Freeman S. B., Savage-Austin A., Pettay D., Taft L., Hersey J., Gu Y., Shen J., Saker D., May K. M. Susceptible chiasmate configurations of chromosome 21 predispose to non-disjunction in both maternal meiosis I and meiosis II. Nat Genet. 1996 Dec;14(4):400–405. doi: 10.1038/ng1296-400. [DOI] [PubMed] [Google Scholar]
  38. Laurie D. A., Hultén M. A. Further studies on bivalent chiasma frequency in human males with normal karyotypes. Ann Hum Genet. 1985 Jul;49(Pt 3):189–201. doi: 10.1111/j.1469-1809.1985.tb01693.x. [DOI] [PubMed] [Google Scholar]
  39. Lawrie N. M., Tease C., Hultén M. A. Chiasma frequency, distribution and interference maps of mouse autosomes. Chromosoma. 1995 Dec;104(4):308–314. doi: 10.1007/BF00352262. [DOI] [PubMed] [Google Scholar]
  40. Lynn A., Kashuk C., Petersen M. B., Bailey J. A., Cox D. R., Antonarakis S. E., Chakravarti A. Patterns of meiotic recombination on the long arm of human chromosome 21. Genome Res. 2000 Sep;10(9):1319–1332. doi: 10.1101/gr.138100. [DOI] [PubMed] [Google Scholar]
  41. MERRIAM J. R., FROST J. N. EXCHANGE AND NONDISJUNCTION OF THE X CHROMOSOMES IN FEMALE DROSOPHILA MELANOGASTER. Genetics. 1964 Jan;49:109–122. doi: 10.1093/genetics/49.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. McClellan Kelly A., Gosden Roger, Taketo Teruko. Continuous loss of oocytes throughout meiotic prophase in the normal mouse ovary. Dev Biol. 2003 Jun 15;258(2):334–348. doi: 10.1016/s0012-1606(03)00132-5. [DOI] [PubMed] [Google Scholar]
  43. Moses M. J., Poorman P. A., Roderick T. H., Davisson M. T. Synaptonemal complex analysis of mouse chromosomal rearrangements. IV. Synapsis and synaptic adjustment in two paracentric inversions. Chromosoma. 1982;84(4):457–474. doi: 10.1007/BF00292848. [DOI] [PubMed] [Google Scholar]
  44. Muller H J. Genetic Variability, Twin Hybrids and Constant Hybrids, in a Case of Balanced Lethal Factors. Genetics. 1918 Sep;3(5):422–499. doi: 10.1093/genetics/3.5.422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. NOVITSKI E. Genetic measures of centromere activity in Drosophila melanogaster. J Cell Physiol Suppl. 1955 May;45(Suppl 2):151–169. doi: 10.1002/jcp.1030450509. [DOI] [PubMed] [Google Scholar]
  46. Nishijima Ichiko, Mills Alea, Qi Yi, Mills Michael, Bradley Allan. Two new balancer chromosomes on mouse chromosome 4 to facilitate functional annotation of human chromosome 1p. Genesis. 2003 Jul;36(3):142–148. doi: 10.1002/gene.10207. [DOI] [PubMed] [Google Scholar]
  47. Novitski E, Braver G. An Analysis of Crossing over within a Heterozygous Inversion in Drosophila Melanogaster. Genetics. 1954 Mar;39(2):197–209. doi: 10.1093/genetics/39.2.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Odorisio T., Rodriguez T. A., Evans E. P., Clarke A. R., Burgoyne P. S. The meiotic checkpoint monitoring synapsis eliminates spermatocytes via p53-independent apoptosis. Nat Genet. 1998 Mar;18(3):257–261. doi: 10.1038/ng0398-257. [DOI] [PubMed] [Google Scholar]
  49. Peters A. H., Plug A. W., van Vugt M. J., de Boer P. A drying-down technique for the spreading of mammalian meiocytes from the male and female germline. Chromosome Res. 1997 Feb;5(1):66–68. doi: 10.1023/a:1018445520117. [DOI] [PubMed] [Google Scholar]
  50. Phillips R. J., Hawker S. G., Moseley H. J. Bare-patches, a new sex-linked gene in the mouse, associated with a high production of XO females. I. A preliminary report of breeding experiments. Genet Res. 1973 Aug;22(1):91–99. [PubMed] [Google Scholar]
  51. Phillips R. J., Kaufman M. H. Bare-patches, a new sex-linked gene in the mouse, associated with a high production of XO females. II. Investigations into the nature and mechanism of the XO production. Genet Res. 1974 Aug;24(1):27–41. doi: 10.1017/s0016672300015056. [DOI] [PubMed] [Google Scholar]
  52. Polani P. E. Centromere localization at meiosis and the position of chiasmata in the male and female mouse. Chromosoma. 1972;36(4):343–374. doi: 10.1007/BF00336793. [DOI] [PubMed] [Google Scholar]
  53. Poorman P. A., Moses M. J., Davisson M. T., Roderick T. H. Synaptonemal complex analysis of mouse chromosomal rearrangements. III. Cytogenetic observations on two paracentric inversions. Chromosoma. 1981;83(3):419–429. doi: 10.1007/BF00327363. [DOI] [PubMed] [Google Scholar]
  54. Rasooly R. S., New C. M., Zhang P., Hawley R. S., Baker B. S. The lethal(1)TW-6cs mutation of Drosophila melanogaster is a dominant antimorphic allele of nod and is associated with a single base change in the putative ATP-binding domain. Genetics. 1991 Oct;129(2):409–422. doi: 10.1093/genetics/129.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Roeder G. S., Bailis J. M. The pachytene checkpoint. Trends Genet. 2000 Sep;16(9):395–403. doi: 10.1016/s0168-9525(00)02080-1. [DOI] [PubMed] [Google Scholar]
  56. Ross L. O., Maxfield R., Dawson D. Exchanges are not equally able to enhance meiotic chromosome segregation in yeast. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4979–4983. doi: 10.1073/pnas.93.10.4979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Rumpler Y., Gabriel-Robez O., Volobouev V., Yu W., Rasamimanana P., de Perdigo A. Male sterility and double heterozygosity for chromosomal inversion. Cytogenet Cell Genet. 1995;69(1-2):66–70. doi: 10.1159/000133940. [DOI] [PubMed] [Google Scholar]
  58. Schalk J. A., Dietrich A. J., Vink A. C., Offenberg H. H., van Aalderen M., Heyting C. Localization of SCP2 and SCP3 protein molecules within synaptonemal complexes of the rat. Chromosoma. 1998 Dec;107(8):540–548. doi: 10.1007/s004120050340. [DOI] [PubMed] [Google Scholar]
  59. Scherthan H., Weich S., Schwegler H., Heyting C., Härle M., Cremer T. Centromere and telomere movements during early meiotic prophase of mouse and man are associated with the onset of chromosome pairing. J Cell Biol. 1996 Sep;134(5):1109–1125. doi: 10.1083/jcb.134.5.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Speed R. M. The effects of ageing on the meiotic chromosomes of male and female mice. Chromosoma. 1977 Nov 30;64(3):241–254. doi: 10.1007/BF00328080. [DOI] [PubMed] [Google Scholar]
  61. Stephenson D. A., Lee K. H., Nagle D. L., Yen C. H., Morrow A., Miller D., Chapman V. M., Bućan M. Mouse rump-white mutation associated with an inversion of chromosome 5. Mamm Genome. 1994 Jun;5(6):342–348. doi: 10.1007/BF00356552. [DOI] [PubMed] [Google Scholar]
  62. Sym M., Roeder G. S. Crossover interference is abolished in the absence of a synaptonemal complex protein. Cell. 1994 Oct 21;79(2):283–292. doi: 10.1016/0092-8674(94)90197-x. [DOI] [PubMed] [Google Scholar]
  63. Tease C., Fisher G. Further examination of the production-line hypothesis in mouse foetal oocytes. I. Inversion heterozygotes. Chromosoma. 1986;93(5):447–452. doi: 10.1007/BF00285827. [DOI] [PubMed] [Google Scholar]
  64. Tease Charles, Hartshorne Geraldine M., Hultén Maj A. Patterns of meiotic recombination in human fetal oocytes. Am J Hum Genet. 2002 May 1;70(6):1469–1479. doi: 10.1086/340734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Winsor E. J., Palmer C. G., Ellis P. M., Hunter J. L., Ferguson-Smith M. A. Meiotic analysis of a pericentric inversion, inv(7) (p22q32), in the father of a child with a duplication-deletion of chromosome 7. Cytogenet Cell Genet. 1978;20(1-6):169–184. doi: 10.1159/000130849. [DOI] [PubMed] [Google Scholar]
  66. Yuan Li, Liu Jian-Guo, Hoja Mary-Rose, Wilbertz Johannes, Nordqvist Katarina, Hög Christer. Female germ cell aneuploidy and embryo death in mice lacking the meiosis-specific protein SCP3. Science. 2002 May 10;296(5570):1115–1118. doi: 10.1126/science.1070594. [DOI] [PubMed] [Google Scholar]
  67. Zickler D., Kleckner N. The leptotene-zygotene transition of meiosis. Annu Rev Genet. 1998;32:619–697. doi: 10.1146/annurev.genet.32.1.619. [DOI] [PubMed] [Google Scholar]
  68. Zitron A. E., Hawley R. S. The genetic analysis of distributive segregation in Drosophila melanogaster. I. Isolation and characterization of Aberrant X segregation (Axs), a mutation defective in chromosome partner choice. Genetics. 1989 Aug;122(4):801–821. doi: 10.1093/genetics/122.4.801. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES