Skip to main content
Genetics logoLink to Genetics
. 2004 Apr;166(4):1995–1999. doi: 10.1534/genetics.166.4.1995

Genomic background predicts the fate of duplicated genes: evidence from the yeast genome.

Ze Zhang 1, Hirohisa Kishino 1
PMCID: PMC1470803  PMID: 15126414

Abstract

Gene duplication with subsequent divergence plays a central role in the acquisition of genes with novel function and complexity during the course of evolution. With reduced functional constraints or through positive selection, these duplicated genes may experience accelerated evolution. Under the model of subfunctionalization, loss of subfunctions leads to complementary acceleration at sites with two copies, and the difference in average rate between the sequences may not be obvious. On the other hand, the classical model of neofunctionalization predicts that the evolutionary rate in one of the two duplicates is accelerated. However, the classical model does not tell which of the duplicates experiences the acceleration in evolutionary rate. Here, we present evidence from the Saccharomyces cerevisiae genome that a duplicate located in a genomic region with a low-recombination rate is likely to evolve faster than a duplicate in an area of high recombination. This observation is consistent with population genetics theory that predicts that purifying selection is less effective in genomic regions of low recombination (Hill-Robertson effect). Together with previous studies, our results suggest the genomic background (e.g., local recombination rate) as a potential force to drive the divergence between nontandemly duplicated genes. This implies the importance of structure and complexity of genomes in the diversification of organisms via gene duplications.

Full Text

The Full Text of this article is available as a PDF (63.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Betrán Esther, Thornton Kevin, Long Manyuan. Retroposed new genes out of the X in Drosophila. Genome Res. 2002 Dec;12(12):1854–1859. doi: 10.1101/gr.604902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Birdsell John A. Integrating genomics, bioinformatics, and classical genetics to study the effects of recombination on genome evolution. Mol Biol Evol. 2002 Jul;19(7):1181–1197. doi: 10.1093/oxfordjournals.molbev.a004176. [DOI] [PubMed] [Google Scholar]
  3. Carvalho A. B., Clark A. G. Intron size and natural selection. Nature. 1999 Sep 23;401(6751):344–344. doi: 10.1038/43827. [DOI] [PubMed] [Google Scholar]
  4. Comeron J. M., Kreitman M., Aguadé M. Natural selection on synonymous sites is correlated with gene length and recombination in Drosophila. Genetics. 1999 Jan;151(1):239–249. doi: 10.1093/genetics/151.1.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Conant Gavin C., Wagner Andreas. Asymmetric sequence divergence of duplicate genes. Genome Res. 2003 Sep;13(9):2052–2058. doi: 10.1101/gr.1252603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Drouin Guy. Characterization of the gene conversions between the multigene family members of the yeast genome. J Mol Evol. 2002 Jul;55(1):14–23. doi: 10.1007/s00239-001-0085-y. [DOI] [PubMed] [Google Scholar]
  7. Force A., Lynch M., Pickett F. B., Amores A., Yan Y. L., Postlethwait J. Preservation of duplicate genes by complementary, degenerative mutations. Genetics. 1999 Apr;151(4):1531–1545. doi: 10.1093/genetics/151.4.1531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gerton J. L., DeRisi J., Shroff R., Lichten M., Brown P. O., Petes T. D. Global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11383–11390. doi: 10.1073/pnas.97.21.11383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gu X. Statistical methods for testing functional divergence after gene duplication. Mol Biol Evol. 1999 Dec;16(12):1664–1674. doi: 10.1093/oxfordjournals.molbev.a026080. [DOI] [PubMed] [Google Scholar]
  10. Hill W. G., Robertson A. The effect of linkage on limits to artificial selection. Genet Res. 1966 Dec;8(3):269–294. [PubMed] [Google Scholar]
  11. Knudsen B., Miyamoto M. M. A likelihood ratio test for evolutionary rate shifts and functional divergence among proteins. Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14512–14517. doi: 10.1073/pnas.251526398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kondrashov Fyodor A., Rogozin Igor B., Wolf Yuri I., Koonin Eugene V. Selection in the evolution of gene duplications. Genome Biol. 2002 Jan 14;3(2):RESEARCH0008–RESEARCH0008. doi: 10.1186/gb-2002-3-2-research0008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Munte A., Aguade M., Segarra C. Changes in the recombinational environment affect divergence in the yellow gene of Drosophila. Mol Biol Evol. 2001 Jun;18(6):1045–1056. doi: 10.1093/oxfordjournals.molbev.a003876. [DOI] [PubMed] [Google Scholar]
  14. Nowak M. A., Boerlijst M. C., Cooke J., Smith J. M. Evolution of genetic redundancy. Nature. 1997 Jul 10;388(6638):167–171. doi: 10.1038/40618. [DOI] [PubMed] [Google Scholar]
  15. Pearson W. R. Searching protein sequence libraries: comparison of the sensitivity and selectivity of the Smith-Waterman and FASTA algorithms. Genomics. 1991 Nov;11(3):635–650. doi: 10.1016/0888-7543(91)90071-l. [DOI] [PubMed] [Google Scholar]
  16. Remm M., Storm C. E., Sonnhammer E. L. Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. J Mol Biol. 2001 Dec 14;314(5):1041–1052. doi: 10.1006/jmbi.2000.5197. [DOI] [PubMed] [Google Scholar]
  17. Robinson-Rechavi M., Huchon D. RRTree: relative-rate tests between groups of sequences on a phylogenetic tree. Bioinformatics. 2000 Mar;16(3):296–297. doi: 10.1093/bioinformatics/16.3.296. [DOI] [PubMed] [Google Scholar]
  18. Rooney Alejandro P., Piontkivska Helen, Nei Masatoshi. Molecular evolution of the nontandemly repeated genes of the histone 3 multigene family. Mol Biol Evol. 2002 Jan;19(1):68–75. doi: 10.1093/oxfordjournals.molbev.a003983. [DOI] [PubMed] [Google Scholar]
  19. Seoighe C., Federspiel N., Jones T., Hansen N., Bivolarovic V., Surzycki R., Tamse R., Komp C., Huizar L., Davis R. W. Prevalence of small inversions in yeast gene order evolution. Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14433–14437. doi: 10.1073/pnas.240462997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Takano-Shimizu T. Local changes in GC/AT substitution biases and in crossover frequencies on Drosophila chromosomes. Mol Biol Evol. 2001 Apr;18(4):606–619. doi: 10.1093/oxfordjournals.molbev.a003841. [DOI] [PubMed] [Google Scholar]
  21. Takano-Shimizu T. Local recombination and mutation effects on molecular evolution in Drosophila. Genetics. 1999 Nov;153(3):1285–1296. doi: 10.1093/genetics/153.3.1285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Thornton Kevin, Long Manyuan. Rapid divergence of gene duplicates on the Drosophila melanogaster X chromosome. Mol Biol Evol. 2002 Jun;19(6):918–925. doi: 10.1093/oxfordjournals.molbev.a004149. [DOI] [PubMed] [Google Scholar]
  24. Van de Peer Y., Taylor J. S., Braasch I., Meyer A. The ghost of selection past: rates of evolution and functional divergence of anciently duplicated genes. J Mol Evol. 2001 Oct-Nov;53(4-5):436–446. doi: 10.1007/s002390010233. [DOI] [PubMed] [Google Scholar]
  25. Wang Y., Gu X. Functional divergence in the caspase gene family and altered functional constraints: statistical analysis and prediction. Genetics. 2001 Jul;158(3):1311–1320. doi: 10.1093/genetics/158.3.1311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wolfe K. H., Shields D. C. Molecular evidence for an ancient duplication of the entire yeast genome. Nature. 1997 Jun 12;387(6634):708–713. doi: 10.1038/42711. [DOI] [PubMed] [Google Scholar]
  27. Wu C. I., Li W. H. Evidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1741–1745. doi: 10.1073/pnas.82.6.1741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zhang Ze, Kishino Hirohisa. Genomic background drives the divergence of duplicated amylase genes at synonymous sites in Drosophila. Mol Biol Evol. 2003 Oct 1;21(2):222–227. doi: 10.1093/molbev/msg243. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES