Abstract
The phiC31 integrase functions efficiently in vitro and in Escherichia coli, yeast, and mammalian cells, mediating unidirectional site-specific recombination between its attB and attP recognition sites. Here we show that this site-specific integration system also functions efficiently in Drosophila melanogaster in cultured cells and in embryos. Intramolecular recombination in S2 cells on transfected plasmid DNA carrying the attB and attP recognition sites occurred at a frequency of 47%. In addition, several endogenous pseudo attP sites were identified in the fly genome that were recognized by the integrase and used as substrates for integration in S2 cells. Two lines of Drosophila were created by integrating an attP site into the genome with a P element. phiC31 integrase injected into embryos as mRNA functioned to promote integration of an attB-containing plasmid into the attP site, resulting in up to 55% of fertile adults producing transgenic offspring. A total of 100% of these progeny carried a precise integration event at the genomic attP site. These experiments demonstrate the potential for precise genetic engineering of the Drosophila genome with the phiC31 integrase system and will likely benefit research in Drosophila and other insects.
Full Text
The Full Text of this article is available as a PDF (169.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bhanot P., Brink M., Samos C. H., Hsieh J. C., Wang Y., Macke J. P., Andrew D., Nathans J., Nusse R. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature. 1996 Jul 18;382(6588):225–230. doi: 10.1038/382225a0. [DOI] [PubMed] [Google Scholar]
- Brand A. H., Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 1993 Jun;118(2):401–415. doi: 10.1242/dev.118.2.401. [DOI] [PubMed] [Google Scholar]
- Golic M. M., Rong Y. S., Petersen R. B., Lindquist S. L., Golic K. G. FLP-mediated DNA mobilization to specific target sites in Drosophila chromosomes. Nucleic Acids Res. 1997 Sep 15;25(18):3665–3671. doi: 10.1093/nar/25.18.3665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Groth A. C., Olivares E. C., Thyagarajan B., Calos M. P. A phage integrase directs efficient site-specific integration in human cells. Proc Natl Acad Sci U S A. 2000 May 23;97(11):5995–6000. doi: 10.1073/pnas.090527097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirt B. Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol. 1967 Jun 14;26(2):365–369. doi: 10.1016/0022-2836(67)90307-5. [DOI] [PubMed] [Google Scholar]
- Lebkowski J. S., DuBridge R. B., Antell E. A., Greisen K. S., Calos M. P. Transfected DNA is mutated in monkey, mouse, and human cells. Mol Cell Biol. 1984 Oct;4(10):1951–1960. doi: 10.1128/mcb.4.10.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levis R., Hazelrigg T., Rubin G. M. Effects of genomic position on the expression of transduced copies of the white gene of Drosophila. Science. 1985 Aug 9;229(4713):558–561. doi: 10.1126/science.2992080. [DOI] [PubMed] [Google Scholar]
- O'Kane C. J., Gehring W. J. Detection in situ of genomic regulatory elements in Drosophila. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9123–9127. doi: 10.1073/pnas.84.24.9123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olivares E. C., Hollis R. P., Calos M. P. Phage R4 integrase mediates site-specific integration in human cells. Gene. 2001 Oct 31;278(1-2):167–176. doi: 10.1016/s0378-1119(01)00711-9. [DOI] [PubMed] [Google Scholar]
- Olivares Eric C., Hollis Roger P., Chalberg Thomas W., Meuse Leonard, Kay Mark A., Calos Michele P. Site-specific genomic integration produces therapeutic Factor IX levels in mice. Nat Biotechnol. 2002 Oct 15;20(11):1124–1128. doi: 10.1038/nbt753. [DOI] [PubMed] [Google Scholar]
- Ortiz-Urda Susana, Lin Qun, Green Cheryl L., Keene Douglas R., Marinkovich M. Peter, Khavari Paul A. Injection of genetically engineered fibroblasts corrects regenerated human epidermolysis bullosa skin tissue. J Clin Invest. 2003 Jan;111(2):251–255. doi: 10.1172/JCI17193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ortiz-Urda Susana, Thyagarajan Bhaskar, Keene Douglas R., Lin Qun, Calos Michele P., Khavari Paul A. PhiC31 integrase-mediated nonviral genetic correction of junctional epidermolysis bullosa. Hum Gene Ther. 2003 Jun 10;14(9):923–928. doi: 10.1089/104303403765701204. [DOI] [PubMed] [Google Scholar]
- Ortiz-Urda Susana, Thyagarajan Bhaskar, Keene Douglas R., Lin Qun, Fang Min, Calos Michele P., Khavari Paul A. Stable nonviral genetic correction of inherited human skin disease. Nat Med. 2002 Sep 16;8(10):1166–1170. doi: 10.1038/nm766. [DOI] [PubMed] [Google Scholar]
- Rong Y. S., Golic K. G. A targeted gene knockout in Drosophila. Genetics. 2001 Mar;157(3):1307–1312. doi: 10.1093/genetics/157.3.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rong Yikang S., Titen Simon W., Xie Heng B., Golic Mary M., Bastiani Michael, Bandyopadhyay Pradip, Olivera Baldomero M., Brodsky Michael, Rubin Gerald M., Golic Kent G. Targeted mutagenesis by homologous recombination in D. melanogaster. Genes Dev. 2002 Jun 15;16(12):1568–1581. doi: 10.1101/gad.986602. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siegal M. L., Hartl D. L. Application of Cre/loxP in Drosophila. Site-specific recombination and transgene coplacement. Methods Mol Biol. 2000;136:487–495. doi: 10.1385/1-59259-065-9:487. [DOI] [PubMed] [Google Scholar]
- Siegal M. L., Hartl D. L. Transgene Coplacement and high efficiency site-specific recombination with the Cre/loxP system in Drosophila. Genetics. 1996 Oct;144(2):715–726. doi: 10.1093/genetics/144.2.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith J. G., Calos M. P. Autonomous replication in Drosophila melanogaster tissue culture cells. Chromosoma. 1995 May;103(9):597–605. doi: 10.1007/BF00357686. [DOI] [PubMed] [Google Scholar]
- Stoll Stephanie M., Ginsburg Daniel S., Calos Michele P. Phage TP901-1 site-specific integrase functions in human cells. J Bacteriol. 2002 Jul;184(13):3657–3663. doi: 10.1128/JB.184.13.3657-3663.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thorpe H. M., Smith M. C. In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5505–5510. doi: 10.1073/pnas.95.10.5505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thyagarajan B., Guimarães M. J., Groth A. C., Calos M. P. Mammalian genomes contain active recombinase recognition sites. Gene. 2000 Feb 22;244(1-2):47–54. doi: 10.1016/s0378-1119(00)00008-1. [DOI] [PubMed] [Google Scholar]
- Thyagarajan B., Olivares E. C., Hollis R. P., Ginsburg D. S., Calos M. P. Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol Cell Biol. 2001 Jun;21(12):3926–3934. doi: 10.1128/MCB.21.12.3926-3934.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]