Skip to main content
Genetics logoLink to Genetics
. 2004 Apr;166(4):1795–1806. doi: 10.1534/genetics.166.4.1795

Isolation and cytogenetic characterization of male meiotic mutants of Drosophila melanogaster.

Kazuyuki Hirai 1, Satomi Toyohira 1, Takashi Ohsako 1, Masa-Toshi Yamamoto 1
PMCID: PMC1470820  PMID: 15126399

Abstract

Proper segregation of homologous chromosomes in meiosis I is ensured by pairing of homologs and maintenance of sister chromatid cohesion. In male Drosophila melanogaster, meiosis is achiasmatic and homologs pair at limited chromosome regions called pairing sites. We screened for male meiotic mutants to identify genes required for normal pairing and disjunction of homologs. Nondisjunction of the sex and the fourth chromosomes in male meiosis was scored as a mutant phenotype. We screened 2306 mutagenized and 226 natural population-derived second and third chromosomes and obtained seven mutants representing different loci on the second chromosome and one on the third. Five mutants showed relatively mild effects (<10% nondisjunction). mei(2)yh149 and mei(2)yoh7134 affected both the sex and the fourth chromosomes, mei(2)yh217 produced possible sex chromosome-specific nondisjunction, and mei(2)yh15 and mei(2)yh137 produced fourth chromosome-specific nondisjunction. mei(2)yh137 was allelic to the teflon gene required for autosomal pairing. Three mutants exhibited severe defects, producing >10% nondisjunction of the sex and/or the fourth chromosomes. mei(2)ys91 (a new allele of the orientation disruptor gene) and mei(3)M20 induced precocious separation of sister chromatids as early as prometa-phase I. mei(2)yh92 predominantly induced nondisjunction at meiosis I that appeared to be the consequence of failure of the separation of paired homologous chromosomes.

Full Text

The Full Text of this article is available as a PDF (158.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appels R., Hilliker A. J. The cytogenetic boundaries of the rDNA region within heterochromatin in the X chromosome of Drosophila melanogaster and their relation to male meiotic pairing sites. Genet Res. 1982 Apr;39(2):149–156. doi: 10.1017/s001667230002084x. [DOI] [PubMed] [Google Scholar]
  2. Ault J. G., Lin H. P., Church K. Meiosis in Drosophila melanogaster. IV. The conjunctive mechanism of the XY bivalent. Chromosoma. 1982;86(3):309–317. doi: 10.1007/BF00292259. [DOI] [PubMed] [Google Scholar]
  3. Ault J. G., Rieder C. L. Meiosis in Drosophila males. I. The question of separate conjunctive mechanisms for the XY and autosomal bivalents. Chromosoma. 1994 Sep;103(5):352–356. doi: 10.1007/BF00417883. [DOI] [PubMed] [Google Scholar]
  4. Baker B. S., Carpenter A. T. Genetic analysis of sex chromosomal meiotic mutants in Drosophilia melanogaster. Genetics. 1972 Jun;71(2):255–286. doi: 10.1093/genetics/71.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Balicky Eric M., Endres Matthew W., Lai Cary, Bickel Sharon E. Meiotic cohesion requires accumulation of ORD on chromosomes before condensation. Mol Biol Cell. 2002 Nov;13(11):3890–3900. doi: 10.1091/mbc.E02-06-0332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bickel S. E., Wyman D. W., Miyazaki W. Y., Moore D. P., Orr-Weaver T. L. Identification of ORD, a Drosophila protein essential for sister chromatid cohesion. EMBO J. 1996 Mar 15;15(6):1451–1459. [PMC free article] [PubMed] [Google Scholar]
  7. Bickel S. E., Wyman D. W., Orr-Weaver T. L. Mutational analysis of the Drosophila sister-chromatid cohesion protein ORD and its role in the maintenance of centromeric cohesion. Genetics. 1997 Aug;146(4):1319–1331. doi: 10.1093/genetics/146.4.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bickel Sharon E., Orr-Weaver Terry L., Balicky Eric M. The sister-chromatid cohesion protein ORD is required for chiasma maintenance in Drosophila oocytes. Curr Biol. 2002 Jun 4;12(11):925–929. doi: 10.1016/s0960-9822(02)00846-1. [DOI] [PubMed] [Google Scholar]
  9. COOPER K. W. Cytogenetic analysis of major heterochromatic elements (especially Xh and Y) in Drosophila melanogaster, and the theory of "heterochromatin". Chromosoma. 1959;10:535–588. doi: 10.1007/BF00396588. [DOI] [PubMed] [Google Scholar]
  10. COOPER K. W. MEIOTIC CONJUNCTIVE ELEMENTS NOT INVOLVING CHIASMATA. Proc Natl Acad Sci U S A. 1964 Nov;52:1248–1255. doi: 10.1073/pnas.52.5.1248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cleveland Don W., Mao Yinghui, Sullivan Kevin F. Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell. 2003 Feb 21;112(4):407–421. doi: 10.1016/s0092-8674(03)00115-6. [DOI] [PubMed] [Google Scholar]
  12. FlyBase Consortium The FlyBase database of the Drosophila genome projects and community literature. Nucleic Acids Res. 2003 Jan 1;31(1):172–175. doi: 10.1093/nar/gkg094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gethmann R. C. Meiosis in male Drosophila melanogaster I. Isolation and characterization of meiotic mutants affecting second chromosome disjuction. Genetics. 1974 Dec;78(4):1127–1142. doi: 10.1093/genetics/78.4.1127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Giunta Kelly L., Jang Janet K., Manheim Elizabeth A., Subramanian Gayathri, McKim Kim S. subito encodes a kinesin-like protein required for meiotic spindle pole formation in Drosophila melanogaster. Genetics. 2002 Apr;160(4):1489–1501. doi: 10.1093/genetics/160.4.1489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Goldstein L. S. Mechanisms of chromosome orientation revealed by two meiotic mutants in Drosophila melanogaster. Chromosoma. 1980;78(1):79–111. doi: 10.1007/BF00291909. [DOI] [PubMed] [Google Scholar]
  16. Hardy R. W., Lindsley D. L., Livak K. J., Lewis B., Siversten A. L., Joslyn G. L., Edwards J., Bonaccorsi S. Cytogenetic analysis of a segment of the Y chromosome of Drosophila melanogaster. Genetics. 1984 Aug;107(4):591–610. doi: 10.1093/genetics/107.4.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hilliker A. J., Holm D. G., Appels R. The relationship between heterochromatic homology and meiotic segregation of compound second autosomes during spermatogenesis in Drosophila melanogaster. Genet Res. 1982 Apr;39(2):157–168. doi: 10.1017/s0016672300020851. [DOI] [PubMed] [Google Scholar]
  18. Kerrebrock A. W., Miyazaki W. Y., Birnby D., Orr-Weaver T. L. The Drosophila mei-S332 gene promotes sister-chromatid cohesion in meiosis following kinetochore differentiation. Genetics. 1992 Apr;130(4):827–841. doi: 10.1093/genetics/130.4.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kitajima Tomoya S., Yokobayashi Shihori, Yamamoto Masayuki, Watanabe Yoshinori. Distinct cohesin complexes organize meiotic chromosome domains. Science. 2003 May 16;300(5622):1152–1155. doi: 10.1126/science.1083634. [DOI] [PubMed] [Google Scholar]
  20. Lee J. Y., Orr-Weaver T. L. The molecular basis of sister-chromatid cohesion. Annu Rev Cell Dev Biol. 2001;17:753–777. doi: 10.1146/annurev.cellbio.17.1.753. [DOI] [PubMed] [Google Scholar]
  21. Lin H. P., Church K. Meiosis in Drosophila melanogaster, III. The effect of orientation disruptor (ord) on gonial mitotic and the meiotic divisions in males. Genetics. 1982 Dec;102(4):751–770. doi: 10.1093/genetics/102.4.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Livak K. J. Detailed structure of the Drosophila melanogaster stellate genes and their transcripts. Genetics. 1990 Feb;124(2):303–316. doi: 10.1093/genetics/124.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Livak K. J. Organization and mapping of a sequence on the Drosophila melanogaster X and Y chromosomes that is transcribed during spermatogenesis. Genetics. 1984 Aug;107(4):611–634. doi: 10.1093/genetics/107.4.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McIntosh J. Richard, Grishchuk Ekaterina L., West Robert R. Chromosome-microtubule interactions during mitosis. Annu Rev Cell Dev Biol. 2002 Apr 2;18:193–219. doi: 10.1146/annurev.cellbio.18.032002.132412. [DOI] [PubMed] [Google Scholar]
  25. McKee B. D., Habera L., Vrana J. A. Evidence that intergenic spacer repeats of Drosophila melanogaster rRNA genes function as X-Y pairing sites in male meiosis, and a general model for achiasmatic pairing. Genetics. 1992 Oct;132(2):529–544. doi: 10.1093/genetics/132.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. McKee B. D., Karpen G. H. Drosophila ribosomal RNA genes function as an X-Y pairing site during male meiosis. Cell. 1990 Apr 6;61(1):61–72. doi: 10.1016/0092-8674(90)90215-z. [DOI] [PubMed] [Google Scholar]
  27. McKee B. D., Lumsden S. E., Das S. The distribution of male meiotic pairing sites on chromosome 2 of Drosophila melanogaster: meiotic pairing and segregation of 2-Y transpositions. Chromosoma. 1993 Feb;102(3):180–194. doi: 10.1007/BF00387733. [DOI] [PubMed] [Google Scholar]
  28. McKee B. D. The license to pair: identification of meiotic pairing sites in Drosophila. Chromosoma. 1996 Sep;105(3):135–141. doi: 10.1007/BF02509494. [DOI] [PubMed] [Google Scholar]
  29. McKee B., Lindsley D. L. Inseparability of X-Heterochromatic Functions Responsible for X:Y Pairing, Meiotic Drive, and Male Fertility in Drosophila melanogaster. Genetics. 1987 Jul;116(3):399–407. doi: 10.1093/genetics/116.3.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Miyazaki W. Y., Orr-Weaver T. L. Sister-chromatid misbehavior in Drosophila ord mutants. Genetics. 1992 Dec;132(4):1047–1061. doi: 10.1093/genetics/132.4.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Moore D. P., Miyazaki W. Y., Tomkiel J. E., Orr-Weaver T. L. Double or nothing: a Drosophila mutation affecting meiotic chromosome segregation in both females and males. Genetics. 1994 Mar;136(3):953–964. doi: 10.1093/genetics/136.3.953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Moore D. P., Page A. W., Tang T. T., Kerrebrock A. W., Orr-Weaver T. L. The cohesion protein MEI-S332 localizes to condensed meiotic and mitotic centromeres until sister chromatids separate. J Cell Biol. 1998 Mar 9;140(5):1003–1012. doi: 10.1083/jcb.140.5.1003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Orr-Weaver T. L. Meiosis in Drosophila: seeing is believing. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10443–10449. doi: 10.1073/pnas.92.23.10443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Palumbo G., Bonaccorsi S., Robbins L. G., Pimpinelli S. Genetic analysis of Stellate elements of Drosophila melanogaster. Genetics. 1994 Dec;138(4):1181–1197. doi: 10.1093/genetics/138.4.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Parisi S., McKay M. J., Molnar M., Thompson M. A., van der Spek P. J., van Drunen-Schoenmaker E., Kanaar R., Lehmann E., Hoeijmakers J. H., Kohli J. Rec8p, a meiotic recombination and sister chromatid cohesion phosphoprotein of the Rad21p family conserved from fission yeast to humans. Mol Cell Biol. 1999 May;19(5):3515–3528. doi: 10.1128/mcb.19.5.3515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Peacock W. J., Miklos G. L., Goodchild D. J. Sex chromosome meiotic drive systems in Drosophila melanogaster I. Abnormal spermatid development in males with a heterochromatin-deficient X chromosome (sc-4sc-8). Genetics. 1975 Apr;79(4):613–634. doi: 10.1093/genetics/79.4.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rasmussen S. W. Ultrastructural studies of spermatogenesis in Drosophila melanogaster Meigen. Z Zellforsch Mikrosk Anat. 1973 Jun 20;140(1):125–144. doi: 10.1007/BF00307062. [DOI] [PubMed] [Google Scholar]
  38. Sandler L., Lindsley D. L., Nicoletti B., Trippa G. Mutants affecting meiosis in natural populations of Drosophila melanogaster. Genetics. 1968 Nov;60(3):525–558. doi: 10.1093/genetics/60.3.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Scholey Jonathan M., Brust-Mascher Ingrid, Mogilner Alex. Cell division. Nature. 2003 Apr 17;422(6933):746–752. doi: 10.1038/nature01599. [DOI] [PubMed] [Google Scholar]
  40. Sekelsky J. J., McKim K. S., Messina L., French R. L., Hurley W. D., Arbel T., Chin G. M., Deneen B., Force S. J., Hari K. L. Identification of novel Drosophila meiotic genes recovered in a P-element screen. Genetics. 1999 Jun;152(2):529–542. doi: 10.1093/genetics/152.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Stapleton W., Das S., McKee B. D. A role of the Drosophila homeless gene in repression of Stellate in male meiosis. Chromosoma. 2001 Jul;110(3):228–240. doi: 10.1007/s004120100136. [DOI] [PubMed] [Google Scholar]
  42. Tang T. T., Bickel S. E., Young L. M., Orr-Weaver T. L. Maintenance of sister-chromatid cohesion at the centromere by the Drosophila MEI-S332 protein. Genes Dev. 1998 Dec 15;12(24):3843–3856. doi: 10.1101/gad.12.24.3843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Toba G., Ohsako T., Miyata N., Ohtsuka T., Seong K. H., Aigaki T. The gene search system. A method for efficient detection and rapid molecular identification of genes in Drosophila melanogaster. Genetics. 1999 Feb;151(2):725–737. doi: 10.1093/genetics/151.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tomkiel J. E., Wakimoto B. T., Briscoe A., Jr The teflon gene is required for maintenance of autosomal homolog pairing at meiosis I in male Drosophila melanogaster. Genetics. 2001 Jan;157(1):273–281. doi: 10.1093/genetics/157.1.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Vass Sharron, Cotterill Sue, Valdeolmillos Ana M., Barbero José L., Lin Enmoore, Warren William D., Heck Margarete M. S. Depletion of Drad21/Scc1 in Drosophila cells leads to instability of the cohesin complex and disruption of mitotic progression. Curr Biol. 2003 Feb 4;13(3):208–218. doi: 10.1016/s0960-9822(03)00047-2. [DOI] [PubMed] [Google Scholar]
  46. Vazquez Julio, Belmont Andrew S., Sedat John W. The dynamics of homologous chromosome pairing during male Drosophila meiosis. Curr Biol. 2002 Sep 3;12(17):1473–1483. doi: 10.1016/s0960-9822(02)01090-4. [DOI] [PubMed] [Google Scholar]
  47. Yamamoto A. H., Muramatsu K., Otsuka T., Yamamoto M. T. Meiotic mutations from natural populations of Drosophila melanogaster. Genetica. 1993;88(2-3):165–173. doi: 10.1007/BF02424473. [DOI] [PubMed] [Google Scholar]
  48. Yamamoto M. T. Inviability of hybrids between D. melanogaster and D. simulans results from the absence of simulans X not the presence of simulans Y chromosome. Genetica. 1992;87(3):151–158. doi: 10.1007/BF00240554. [DOI] [PubMed] [Google Scholar]
  49. Yamamoto M. Cytological studies of heterochromatin function in the Drosophila melanogaster male: autosomal meiotic paring. Chromosoma. 1979 May 10;72(3):293–328. doi: 10.1007/BF00331091. [DOI] [PubMed] [Google Scholar]
  50. Yamamoto M., Miklos G. L. Genetic dissection of heterochromatin in Drosophila: the role of basal X heterochromatin in meiotic sex chromosome behaviour. Chromosoma. 1977 Apr 19;60(3):283–296. doi: 10.1007/BF00329776. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES