Skip to main content
Genetics logoLink to Genetics
. 2004 Apr;166(4):1701–1713. doi: 10.1534/genetics.166.4.1701

Role of the nuclease activity of Saccharomyces cerevisiae Mre11 in repair of DNA double-strand breaks in mitotic cells.

L Kevin Lewis 1, Francesca Storici 1, Stephen Van Komen 1, Shanna Calero 1, Patrick Sung 1, Michael A Resnick 1
PMCID: PMC1470833  PMID: 15126391

Abstract

The Rad50:Mre11:Xrs2 (RMX) complex functions in repair of DNA double-strand breaks (DSBs) by recombination and nonhomologous end-joining (NHEJ) and is also required for telomere stability. The Mre11 subunit exhibits nuclease activities in vitro, but the role of these activities in repair in mitotic cells has not been established. In this study we have performed a comparative study of three mutants (mre11-D16A, -D56N, and -H125N) previously shown to have reduced nuclease activities in vitro. In ends-in and ends-out chromosome recombination assays using defined plasmid and oligonucleotide DNA substrates, mre11-D16A cells were as deficient as mre11 null strains, but defects were small in mre11-D56N and -H125N mutants. mre11-D16A cells, but not the other mutants, also displayed strong sensitivity to ionizing radiation, with residual resistance largely dependent on the presence of the partially redundant nuclease Exo1. mre11-D16A mutants were also most sensitive to the S-phase-dependent clastogens hydroxyurea and methyl methanesulfonate but, as previously observed for D56N and H125N mutants, were not defective in NHEJ. Importantly, the affinity of purified Mre11-D16A protein for Rad50 and Xrs2 was indistinguishable from wild type and the mutant protein formed complexes with equivalent stoichiometry. Although the role of the nuclease activity has been questioned in previous studies, the comparative data presented here suggest that the nuclease function of Mre11 is required for RMX-mediated recombinational repair and telomere stabilization in mitotic cells.

Full Text

The Full Text of this article is available as a PDF (232.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett C. B., Lewis L. K., Karthikeyan G., Lobachev K. S., Jin Y. H., Sterling J. F., Snipe J. R., Resnick M. A. Genes required for ionizing radiation resistance in yeast. Nat Genet. 2001 Dec;29(4):426–434. doi: 10.1038/ng778. [DOI] [PubMed] [Google Scholar]
  2. Bressan D. A., Baxter B. K., Petrini J. H. The Mre11-Rad50-Xrs2 protein complex facilitates homologous recombination-based double-strand break repair in Saccharomyces cerevisiae. Mol Cell Biol. 1999 Nov;19(11):7681–7687. doi: 10.1128/mcb.19.11.7681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bressan D. A., Olivares H. A., Nelms B. E., Petrini J. H. Alteration of N-terminal phosphoesterase signature motifs inactivates Saccharomyces cerevisiae Mre11. Genetics. 1998 Oct;150(2):591–600. doi: 10.1093/genetics/150.2.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chamankhah M., Fontanie T., Xiao W. The Saccharomyces cerevisiae mre11(ts) allele confers a separation of DNA repair and telomere maintenance functions. Genetics. 2000 Jun;155(2):569–576. doi: 10.1093/genetics/155.2.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chamankhah M., Xiao W. Formation of the yeast Mre11-Rad50-Xrs2 complex is correlated with DNA repair and telomere maintenance. Nucleic Acids Res. 1999 May 15;27(10):2072–2079. doi: 10.1093/nar/27.10.2072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chang Michael, Bellaoui Mohammed, Boone Charles, Brown Grant W. A genome-wide screen for methyl methanesulfonate-sensitive mutants reveals genes required for S phase progression in the presence of DNA damage. Proc Natl Acad Sci U S A. 2002 Dec 13;99(26):16934–16939. doi: 10.1073/pnas.262669299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen C., Kolodner R. D. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat Genet. 1999 Sep;23(1):81–85. doi: 10.1038/12687. [DOI] [PubMed] [Google Scholar]
  8. Chen L., Trujillo K., Ramos W., Sung P., Tomkinson A. E. Promotion of Dnl4-catalyzed DNA end-joining by the Rad50/Mre11/Xrs2 and Hdf1/Hdf2 complexes. Mol Cell. 2001 Nov;8(5):1105–1115. doi: 10.1016/s1097-2765(01)00388-4. [DOI] [PubMed] [Google Scholar]
  9. Cromie G. A., Leach D. R. Control of crossing over. Mol Cell. 2000 Oct;6(4):815–826. doi: 10.1016/s1097-2765(05)00095-x. [DOI] [PubMed] [Google Scholar]
  10. D'Amours D., Jackson S. P. The yeast Xrs2 complex functions in S phase checkpoint regulation. Genes Dev. 2001 Sep 1;15(17):2238–2249. doi: 10.1101/gad.208701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. D'Amours Damien, Jackson Stephen P. The Mre11 complex: at the crossroads of dna repair and checkpoint signalling. Nat Rev Mol Cell Biol. 2002 May;3(5):317–327. doi: 10.1038/nrm805. [DOI] [PubMed] [Google Scholar]
  12. Diede S. J., Gottschling D. E. Exonuclease activity is required for sequence addition and Cdc13p loading at a de novo telomere. Curr Biol. 2001 Sep 4;11(17):1336–1340. doi: 10.1016/s0960-9822(01)00400-6. [DOI] [PubMed] [Google Scholar]
  13. Fukuda T., Sumiyoshi T., Takahashi M., Kataoka T., Asahara T., Inui H., Watatani M., Yasutomi M., Kamada N., Miyagawa K. Alterations of the double-strand break repair gene MRE11 in cancer. Cancer Res. 2001 Jan 1;61(1):23–26. [PubMed] [Google Scholar]
  14. Furuse M., Nagase Y., Tsubouchi H., Murakami-Murofushi K., Shibata T., Ohta K. Distinct roles of two separable in vitro activities of yeast Mre11 in mitotic and meiotic recombination. EMBO J. 1998 Nov 2;17(21):6412–6425. doi: 10.1093/emboj/17.21.6412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Giannini Giuseppe, Ristori Elisabetta, Cerignoli Fabio, Rinaldi Christian, Zani Massimo, Viel Alessandra, Ottini Laura, Crescenzi Marco, Martinotti Stefano, Bignami Margherita. Human MRE11 is inactivated in mismatch repair-deficient cancers. EMBO Rep. 2002 Feb 15;3(3):248–254. doi: 10.1093/embo-reports/kvf044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Grenon M., Gilbert C., Lowndes N. F. Checkpoint activation in response to double-strand breaks requires the Mre11/Rad50/Xrs2 complex. Nat Cell Biol. 2001 Sep;3(9):844–847. doi: 10.1038/ncb0901-844. [DOI] [PubMed] [Google Scholar]
  17. Hopfner K. P., Karcher A., Craig L., Woo T. T., Carney J. P., Tainer J. A. Structural biochemistry and interaction architecture of the DNA double-strand break repair Mre11 nuclease and Rad50-ATPase. Cell. 2001 May 18;105(4):473–485. doi: 10.1016/s0092-8674(01)00335-x. [DOI] [PubMed] [Google Scholar]
  18. Hopfner K. P., Karcher A., Shin D. S., Craig L., Arthur L. M., Carney J. P., Tainer J. A. Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell. 2000 Jun 23;101(7):789–800. doi: 10.1016/s0092-8674(00)80890-9. [DOI] [PubMed] [Google Scholar]
  19. Hopfner Karl-Peter, Craig Lisa, Moncalian Gabriel, Zinkel Robert A., Usui Takehiko, Owen Barbara A. L., Karcher Annette, Henderson Brendan, Bodmer Jean-Luc, McMurray Cynthia T. The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair. Nature. 2002 Aug 1;418(6897):562–566. doi: 10.1038/nature00922. [DOI] [PubMed] [Google Scholar]
  20. Kouprina N., Nikolaishvili N., Graves J., Koriabine M., Resnick M. A., Larionov V. Integrity of human YACs during propagation in recombination-deficient yeast strains. Genomics. 1999 Mar 15;56(3):262–273. doi: 10.1006/geno.1998.5727. [DOI] [PubMed] [Google Scholar]
  21. Larionov V., Kouprina N., Nikolaishvili N., Resnick M. A. Recombination during transformation as a source of chimeric mammalian artificial chromosomes in yeast (YACs). Nucleic Acids Res. 1994 Oct 11;22(20):4154–4162. doi: 10.1093/nar/22.20.4154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lee Sang Eun, Bressan Debra A., Petrini John H. J., Haber James E. Complementation between N-terminal Saccharomyces cerevisiae mre11 alleles in DNA repair and telomere length maintenance. DNA Repair (Amst) 2002 Jan 22;1(1):27–40. doi: 10.1016/s1568-7864(01)00003-9. [DOI] [PubMed] [Google Scholar]
  23. Lewis L. K., Kirchner J. M., Resnick M. A. Requirement for end-joining and checkpoint functions, but not RAD52-mediated recombination, after EcoRI endonuclease cleavage of Saccharomyces cerevisiae DNA. Mol Cell Biol. 1998 Apr;18(4):1891–1902. doi: 10.1128/mcb.18.4.1891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lewis L. K., Resnick M. A. Tying up loose ends: nonhomologous end-joining in Saccharomyces cerevisiae. Mutat Res. 2000 Jun 30;451(1-2):71–89. doi: 10.1016/s0027-5107(00)00041-5. [DOI] [PubMed] [Google Scholar]
  25. Lewis L. Kevin, Karthikeyan G., Westmoreland James W., Resnick Michael A. Differential suppression of DNA repair deficiencies of Yeast rad50, mre11 and xrs2 mutants by EXO1 and TLC1 (the RNA component of telomerase). Genetics. 2002 Jan;160(1):49–62. doi: 10.1093/genetics/160.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Merrill B. J., Holm C. A requirement for recombinational repair in Saccharomyces cerevisiae is caused by DNA replication defects of mec1 mutants. Genetics. 1999 Oct;153(2):595–605. doi: 10.1093/genetics/153.2.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Moreau S., Morgan E. A., Symington L. S. Overlapping functions of the Saccharomyces cerevisiae Mre11, Exo1 and Rad27 nucleases in DNA metabolism. Genetics. 2001 Dec;159(4):1423–1433. doi: 10.1093/genetics/159.4.1423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Myung Kyungjae, Kolodner Richard D. Suppression of genome instability by redundant S-phase checkpoint pathways in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2002 Mar 26;99(7):4500–4507. doi: 10.1073/pnas.062702199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Petrini J. H. The mammalian Mre11-Rad50-nbs1 protein complex: integration of functions in the cellular DNA-damage response. Am J Hum Genet. 1999 May;64(5):1264–1269. doi: 10.1086/302391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rattray A. J., McGill C. B., Shafer B. K., Strathern J. N. Fidelity of mitotic double-strand-break repair in Saccharomyces cerevisiae: a role for SAE2/COM1. Genetics. 2001 May;158(1):109–122. doi: 10.1093/genetics/158.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Resnick M. A., Martin P. The repair of double-strand breaks in the nuclear DNA of Saccharomyces cerevisiae and its genetic control. Mol Gen Genet. 1976 Jan 16;143(2):119–129. doi: 10.1007/BF00266917. [DOI] [PubMed] [Google Scholar]
  32. Stewart G. S., Maser R. S., Stankovic T., Bressan D. A., Kaplan M. I., Jaspers N. G., Raams A., Byrd P. J., Petrini J. H., Taylor A. M. The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell. 1999 Dec 10;99(6):577–587. doi: 10.1016/s0092-8674(00)81547-0. [DOI] [PubMed] [Google Scholar]
  33. Sung P., Trujillo K. M., Van Komen S. Recombination factors of Saccharomyces cerevisiae. Mutat Res. 2000 Jun 30;451(1-2):257–275. doi: 10.1016/s0027-5107(00)00054-3. [DOI] [PubMed] [Google Scholar]
  34. Symington L. S., Kang L. E., Moreau S. Alteration of gene conversion tract length and associated crossing over during plasmid gap repair in nuclease-deficient strains of Saccharomyces cerevisiae. Nucleic Acids Res. 2000 Dec 1;28(23):4649–4656. doi: 10.1093/nar/28.23.4649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Symington Lorraine S. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev. 2002 Dec;66(4):630-70, table of contents. doi: 10.1128/MMBR.66.4.630-670.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tran H. T., Gordenin D. A., Resnick M. A. The 3'-->5' exonucleases of DNA polymerases delta and epsilon and the 5'-->3' exonuclease Exo1 have major roles in postreplication mutation avoidance in Saccharomyces cerevisiae. Mol Cell Biol. 1999 Mar;19(3):2000–2007. doi: 10.1128/mcb.19.3.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Trujillo Kelly M., Roh Dong Hyun, Chen Ling, Van Komen Stephen, Tomkinson Alan, Sung Patrick. Yeast xrs2 binds DNA and helps target rad50 and mre11 to DNA ends. J Biol Chem. 2003 Sep 30;278(49):48957–48964. doi: 10.1074/jbc.M309877200. [DOI] [PubMed] [Google Scholar]
  38. Tsubouchi H., Ogawa H. Exo1 roles for repair of DNA double-strand breaks and meiotic crossing over in Saccharomyces cerevisiae. Mol Biol Cell. 2000 Jul;11(7):2221–2233. doi: 10.1091/mbc.11.7.2221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tsukamoto Y., Taggart A. K., Zakian V. A. The role of the Mre11-Rad50-Xrs2 complex in telomerase- mediated lengthening of Saccharomyces cerevisiae telomeres. Curr Biol. 2001 Sep 4;11(17):1328–1335. doi: 10.1016/s0960-9822(01)00372-4. [DOI] [PubMed] [Google Scholar]
  40. Usui T., Ogawa H., Petrini J. H. A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol Cell. 2001 Jun;7(6):1255–1266. doi: 10.1016/s1097-2765(01)00270-2. [DOI] [PubMed] [Google Scholar]
  41. Usui T., Ohta T., Oshiumi H., Tomizawa J., Ogawa H., Ogawa T. Complex formation and functional versatility of Mre11 of budding yeast in recombination. Cell. 1998 Nov 25;95(5):705–716. doi: 10.1016/s0092-8674(00)81640-2. [DOI] [PubMed] [Google Scholar]
  42. de Jager M., van Noort J., van Gent D. C., Dekker C., Kanaar R., Wyman C. Human Rad50/Mre11 is a flexible complex that can tether DNA ends. Mol Cell. 2001 Nov;8(5):1129–1135. doi: 10.1016/s1097-2765(01)00381-1. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES