Skip to main content
Genetics logoLink to Genetics
. 2004 May;167(1):35–49. doi: 10.1534/genetics.167.1.35

Analysis of beta-1,3-glucan assembly in Saccharomyces cerevisiae using a synthetic interaction network and altered sensitivity to caspofungin.

Guillaume Lesage 1, Anne-Marie Sdicu 1, Patrice Ménard 1, Jesse Shapiro 1, Shamiza Hussein 1, Howard Bussey 1
PMCID: PMC1470839  PMID: 15166135

Abstract

Large-scale screening of genetic and chemical-genetic interactions was used to examine the assembly and regulation of beta-1,3-glucan in Saccharomyces cerevisiae. Using the set of deletion mutants in approximately 4600 nonessential genes, we scored synthetic interactions with genes encoding subunits of the beta-1,3-glucan synthase (FKS1, FKS2), the glucan synthesis regulator (SMI1/KNR4), and a beta-1,3-glucanosyltransferase (GAS1). In the resulting network, FKS1, FKS2, GAS1, and SMI1 are connected to 135 genes in 195 interactions, with 26 of these genes also interacting with CHS3 encoding chitin synthase III. A network core of 51 genes is multiply connected with 112 interactions. Thirty-two of these core genes are known to be involved in cell wall assembly and polarized growth, and 8 genes of unknown function are candidates for involvement in these processes. In parallel, we screened the yeast deletion mutant collection for altered sensitivity to the glucan synthase inhibitor, caspofungin. Deletions in 52 genes led to caspofungin hypersensitivity and those in 39 genes to resistance. Integration of the glucan interaction network with the caspofungin data indicates an overlapping set of genes involved in FKS2 regulation, compensatory chitin synthesis, protein mannosylation, and the PKC1-dependent cell integrity pathway.

Full Text

The Full Text of this article is available as a PDF (370.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agarwal Ameeta K., Rogers P. David, Baerson Scott R., Jacob Melissa R., Barker Katherine S., Cleary John D., Walker Larry A., Nagle Dale G., Clark Alice M. Genome-wide expression profiling of the response to polyene, pyrimidine, azole, and echinocandin antifungal agents in Saccharomyces cerevisiae. J Biol Chem. 2003 Jun 24;278(37):34998–35015. doi: 10.1074/jbc.M306291200. [DOI] [PubMed] [Google Scholar]
  2. Alonso-Monge R., Real E., Wojda I., Bebelman J. P., Mager W. H., Siderius M. Hyperosmotic stress response and regulation of cell wall integrity in Saccharomyces cerevisiae share common functional aspects. Mol Microbiol. 2001 Aug;41(3):717–730. doi: 10.1046/j.1365-2958.2001.02549.x. [DOI] [PubMed] [Google Scholar]
  3. Brachmann C. B., Davies A., Cost G. J., Caputo E., Li J., Hieter P., Boeke J. D. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast. 1998 Jan 30;14(2):115–132. doi: 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  4. Carotti Cristina, Ferrario Laura, Roncero Cesar, Valdivieso M-Henar, Duran Angel, Popolo Laura. Maintenance of cell integrity in the gas1 mutant of Saccharomyces cerevisiae requires the Chs3p-targeting and activation pathway and involves an unusual Chs3p localization. Yeast. 2002 Sep 30;19(13):1113–1124. doi: 10.1002/yea.905. [DOI] [PubMed] [Google Scholar]
  5. Dijkgraaf Gerrit J. P., Abe Mitsuhiro, Ohya Yoshikazu, Bussey Howard. Mutations in Fks1p affect the cell wall content of beta-1,3- and beta-1,6-glucan in Saccharomyces cerevisiae. Yeast. 2002 Jun 15;19(8):671–690. doi: 10.1002/yea.866. [DOI] [PubMed] [Google Scholar]
  6. Drgonová J., Drgon T., Tanaka K., Kollár R., Chen G. C., Ford R. A., Chan C. S., Takai Y., Cabib E. Rho1p, a yeast protein at the interface between cell polarization and morphogenesis. Science. 1996 Apr 12;272(5259):277–279. doi: 10.1126/science.272.5259.277. [DOI] [PubMed] [Google Scholar]
  7. García-Rodriguez L. J., Durán A., Roncero C. Calcofluor antifungal action depends on chitin and a functional high-osmolarity glycerol response (HOG) pathway: evidence for a physiological role of the Saccharomyces cerevisiae HOG pathway under noninducing conditions. J Bacteriol. 2000 May;182(9):2428–2437. doi: 10.1128/jb.182.9.2428-2437.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. García-Rodriguez L. J., Trilla J. A., Castro C., Valdivieso M. H., Durán A., Roncero C. Characterization of the chitin biosynthesis process as a compensatory mechanism in the fks1 mutant of Saccharomyces cerevisiae. FEBS Lett. 2000 Jul 28;478(1-2):84–88. doi: 10.1016/s0014-5793(00)01835-4. [DOI] [PubMed] [Google Scholar]
  9. Giaever Guri, Chu Angela M., Ni Li, Connelly Carla, Riles Linda, Véronneau Steeve, Dow Sally, Lucau-Danila Ankuta, Anderson Keith, André Bruno. Functional profiling of the Saccharomyces cerevisiae genome. Nature. 2002 Jul 25;418(6896):387–391. doi: 10.1038/nature00935. [DOI] [PubMed] [Google Scholar]
  10. Heinisch J. J., Lorberg A., Schmitz H. P., Jacoby J. J. The protein kinase C-mediated MAP kinase pathway involved in the maintenance of cellular integrity in Saccharomyces cerevisiae. Mol Microbiol. 1999 May;32(4):671–680. doi: 10.1046/j.1365-2958.1999.01375.x. [DOI] [PubMed] [Google Scholar]
  11. Hong Z., Mann P., Brown N. H., Tran L. E., Shaw K. J., Hare R. S., DiDomenico B. Cloning and characterization of KNR4, a yeast gene involved in (1,3)-beta-glucan synthesis. Mol Cell Biol. 1994 Feb;14(2):1017–1025. doi: 10.1128/mcb.14.2.1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Huang Dongqing, Moffat Jason, Andrews Brenda. Dissection of a complex phenotype by functional genomics reveals roles for the yeast cyclin-dependent protein kinase Pho85 in stress adaptation and cell integrity. Mol Cell Biol. 2002 Jul;22(14):5076–5088. doi: 10.1128/MCB.22.14.5076-5088.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Huxley C., Green E. D., Dunham I. Rapid assessment of S. cerevisiae mating type by PCR. Trends Genet. 1990 Aug;6(8):236–236. doi: 10.1016/0168-9525(90)90190-h. [DOI] [PubMed] [Google Scholar]
  14. Igual J. C., Johnson A. L., Johnston L. H. Coordinated regulation of gene expression by the cell cycle transcription factor Swi4 and the protein kinase C MAP kinase pathway for yeast cell integrity. EMBO J. 1996 Sep 16;15(18):5001–5013. [PMC free article] [PubMed] [Google Scholar]
  15. Kaeberlein Matt, Guarente Leonard. Saccharomyces cerevisiae MPT5 and SSD1 function in parallel pathways to promote cell wall integrity. Genetics. 2002 Jan;160(1):83–95. doi: 10.1093/genetics/160.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Klis Frans M., Mol Pieternella, Hellingwerf Klaas, Brul Stanley. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev. 2002 Aug;26(3):239–256. doi: 10.1111/j.1574-6976.2002.tb00613.x. [DOI] [PubMed] [Google Scholar]
  17. Kondoh Osamu, Takasuka Tsuyoshi, Arisawa Mikio, Aoki Yuko, Watanabe Takahide. Differential sensitivity between Fks1p and Fks2p against a novel beta -1,3-glucan synthase inhibitor, aerothricin3 [corrected]. J Biol Chem. 2002 Aug 28;277(44):41744–41749. doi: 10.1074/jbc.M206734200. [DOI] [PubMed] [Google Scholar]
  18. Lagorce Arnaud, Hauser Nicole C., Labourdette Delphine, Rodriguez Cristina, Martin-Yken Helene, Arroyo Javier, Hoheisel Jörg D., François Jean. Genome-wide analysis of the response to cell wall mutations in the yeast Saccharomyces cerevisiae. J Biol Chem. 2003 Mar 18;278(22):20345–20357. doi: 10.1074/jbc.M211604200. [DOI] [PubMed] [Google Scholar]
  19. Letscher-Bru Valérie, Herbrecht Raoul. Caspofungin: the first representative of a new antifungal class. J Antimicrob Chemother. 2003 Mar;51(3):513–521. doi: 10.1093/jac/dkg117. [DOI] [PubMed] [Google Scholar]
  20. Lussier M., White A. M., Sheraton J., di Paolo T., Treadwell J., Southard S. B., Horenstein C. I., Chen-Weiner J., Ram A. F., Kapteyn J. C. Large scale identification of genes involved in cell surface biosynthesis and architecture in Saccharomyces cerevisiae. Genetics. 1997 Oct;147(2):435–450. doi: 10.1093/genetics/147.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Martin-Yken Helene, Dagkessamanskaia Adilia, Basmaji Fadi, Lagorce Arnaud, Francois Jean. The interaction of Slt2 MAP kinase with Knr4 is necessary for signalling through the cell wall integrity pathway in Saccharomyces cerevisiae. Mol Microbiol. 2003 Jul;49(1):23–35. doi: 10.1046/j.1365-2958.2003.03541.x. [DOI] [PubMed] [Google Scholar]
  22. Martin-Yken Helene, Dagkessamanskaia Adilia, Talibi Driss, Francois Jean. KNR4 is a member of the PKC1 signalling pathway and genetically interacts with BCK2, a gene involved in cell cycle progression in Saccharomyces cerevisiae. Curr Genet. 2002 Jul 23;41(5):323–332. doi: 10.1007/s00294-002-0299-6. [DOI] [PubMed] [Google Scholar]
  23. Martin H., Dagkessamanskaia A., Satchanska G., Dallies N., François J. KNR4, a suppressor of Saccharomyces cerevisiae cwh mutants, is involved in the transcriptional control of chitin synthase genes. Microbiology. 1999 Jan;145(Pt 1):249–258. doi: 10.1099/13500872-145-1-249. [DOI] [PubMed] [Google Scholar]
  24. Mazur P., Morin N., Baginsky W., el-Sherbeini M., Clemas J. A., Nielsen J. B., Foor F. Differential expression and function of two homologous subunits of yeast 1,3-beta-D-glucan synthase. Mol Cell Biol. 1995 Oct;15(10):5671–5681. doi: 10.1128/mcb.15.10.5671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mazzoni C., Zarov P., Rambourg A., Mann C. The SLT2 (MPK1) MAP kinase homolog is involved in polarized cell growth in Saccharomyces cerevisiae. J Cell Biol. 1993 Dec;123(6 Pt 2):1821–1833. doi: 10.1083/jcb.123.6.1821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mouyna I., Fontaine T., Vai M., Monod M., Fonzi W. A., Diaquin M., Popolo L., Hartland R. P., Latgé J. P. Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. J Biol Chem. 2000 May 19;275(20):14882–14889. doi: 10.1074/jbc.275.20.14882. [DOI] [PubMed] [Google Scholar]
  27. Pagé Nicolas, Gérard-Vincent Manon, Ménard Patrice, Beaulieu Maude, Azuma Masayuki, Dijkgraaf Gerrit J. P., Li Huijuan, Marcoux José, Nguyen Thuy, Dowse Tim. A Saccharomyces cerevisiae genome-wide mutant screen for altered sensitivity to K1 killer toxin. Genetics. 2003 Mar;163(3):875–894. doi: 10.1093/genetics/163.3.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Parsons Ainslie B., Brost Renée L., Ding Huiming, Li Zhijian, Zhang Chaoying, Sheikh Bilal, Brown Grant W., Kane Patricia M., Hughes Timothy R., Boone Charles. Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat Biotechnol. 2003 Dec 7;22(1):62–69. doi: 10.1038/nbt919. [DOI] [PubMed] [Google Scholar]
  29. Pruyne D., Bretscher A. Polarization of cell growth in yeast. I. Establishment and maintenance of polarity states. J Cell Sci. 2000 Feb;113(Pt 3):365–375. doi: 10.1242/jcs.113.3.365. [DOI] [PubMed] [Google Scholar]
  30. Qadota H., Python C. P., Inoue S. B., Arisawa M., Anraku Y., Zheng Y., Watanabe T., Levin D. E., Ohya Y. Identification of yeast Rho1p GTPase as a regulatory subunit of 1,3-beta-glucan synthase. Science. 1996 Apr 12;272(5259):279–281. doi: 10.1126/science.272.5259.279. [DOI] [PubMed] [Google Scholar]
  31. Ram A. F., Kapteyn J. C., Montijn R. C., Caro L. H., Douwes J. E., Baginsky W., Mazur P., van den Ende H., Klis F. M. Loss of the plasma membrane-bound protein Gas1p in Saccharomyces cerevisiae results in the release of beta1,3-glucan into the medium and induces a compensation mechanism to ensure cell wall integrity. J Bacteriol. 1998 Mar;180(6):1418–1424. doi: 10.1128/jb.180.6.1418-1424.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Reynolds T. B., Hopkins B. D., Lyons M. R., Graham T. R. The high osmolarity glycerol response (HOG) MAP kinase pathway controls localization of a yeast golgi glycosyltransferase. J Cell Biol. 1998 Nov 16;143(4):935–946. doi: 10.1083/jcb.143.4.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rine J., Hansen W., Hardeman E., Davis R. W. Targeted selection of recombinant clones through gene dosage effects. Proc Natl Acad Sci U S A. 1983 Nov;80(22):6750–6754. doi: 10.1073/pnas.80.22.6750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Roncero Cesar. The genetic complexity of chitin synthesis in fungi. Curr Genet. 2002 Aug 1;41(6):367–378. doi: 10.1007/s00294-002-0318-7. [DOI] [PubMed] [Google Scholar]
  35. Smits G. J., Kapteyn J. C., van den Ende H., Klis F. M. Cell wall dynamics in yeast. Curr Opin Microbiol. 1999 Aug;2(4):348–352. doi: 10.1016/s1369-5274(99)80061-7. [DOI] [PubMed] [Google Scholar]
  36. Stathopoulos A. M., Cyert M. S. Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast. Genes Dev. 1997 Dec 15;11(24):3432–3444. doi: 10.1101/gad.11.24.3432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tong A. H., Evangelista M., Parsons A. B., Xu H., Bader G. D., Pagé N., Robinson M., Raghibizadeh S., Hogue C. W., Bussey H. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science. 2001 Dec 14;294(5550):2364–2368. doi: 10.1126/science.1065810. [DOI] [PubMed] [Google Scholar]
  38. Tong Amy Hin Yan, Lesage Guillaume, Bader Gary D., Ding Huiming, Xu Hong, Xin Xiaofeng, Young James, Berriz Gabriel F., Brost Renee L., Chang Michael. Global mapping of the yeast genetic interaction network. Science. 2004 Feb 6;303(5659):808–813. doi: 10.1126/science.1091317. [DOI] [PubMed] [Google Scholar]
  39. Valdivia Raphael H., Schekman Randy. The yeasts Rho1p and Pkc1p regulate the transport of chitin synthase III (Chs3p) from internal stores to the plasma membrane. Proc Natl Acad Sci U S A. 2003 Aug 19;100(18):10287–10292. doi: 10.1073/pnas.1834246100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Valdivieso M. H., Ferrario L., Vai M., Duran A., Popolo L. Chitin synthesis in a gas1 mutant of Saccharomyces cerevisiae. J Bacteriol. 2000 Sep;182(17):4752–4757. doi: 10.1128/jb.182.17.4752-4757.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Winzeler E. A., Shoemaker D. D., Astromoff A., Liang H., Anderson K., Andre B., Bangham R., Benito R., Boeke J. D., Bussey H. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science. 1999 Aug 6;285(5429):901–906. doi: 10.1126/science.285.5429.901. [DOI] [PubMed] [Google Scholar]
  42. Zeitlinger Julia, Simon Itamar, Harbison Christopher T., Hannett Nancy M., Volkert Thomas L., Fink Gerald R., Young Richard A. Program-specific distribution of a transcription factor dependent on partner transcription factor and MAPK signaling. Cell. 2003 May 2;113(3):395–404. doi: 10.1016/s0092-8674(03)00301-5. [DOI] [PubMed] [Google Scholar]
  43. Zhao C., Jung U. S., Garrett-Engele P., Roe T., Cyert M. S., Levin D. E. Temperature-induced expression of yeast FKS2 is under the dual control of protein kinase C and calcineurin. Mol Cell Biol. 1998 Feb;18(2):1013–1022. doi: 10.1128/mcb.18.2.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES