Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Nov 15;25(22):4487–4492. doi: 10.1093/nar/25.22.4487

Binding of Hoechst 33258 to the TAR RNA of HIV-1. Recognition of a pyrimidine bulge-dependent structure.

L Dassonneville 1, F Hamy 1, P Colson 1, C Houssier 1, C Bailly 1
PMCID: PMC147084  PMID: 9358156

Abstract

The transactivation response region (TAR) RNA is an essential component in transcriptional regulation of the human immunodeficiency virus type-1 (HIV-1) genome. We have examined the interaction between TAR RNA and the bisbenzimidazole derivative Hoechst 33258. Previous studies have shown that this drug, which is well known as an AT-selective DNA minor groove binder, can also interact with GC-rich sequences in DNA as well as with RNA, possibly by intercalation. Absorption spectroscopy, circular dichroism and electric linear dichroism, as well as RNase A footprinting, were employed to compare binding of Hoechst 33258 to wild-type RNA and its analogue lacking the pyrimidine bulge. The uridine bulge, which is an important contributor to the structural stability of TAR, plays an essential role in drug binding. Deletion of the bulge destabilizes both free and drug-bound forms of TAR and markedly affects the orientation of the drug chromophore complexed with the RNA. According to the linear dichroism data, the bisbenzimidazole is oriented more or less perpendicular to the RNA helix axis. The data are compatible with a model in which the bisbenzimidazole chromophore is inserted into the existing cavity created by the pyrimidine bulge. The footprinting experiments, showing that the drug binds to a unique site opposite the unpaired uridine residues, also support this model. The binding of Hoechst 33258 to the sequence 5'-GCUCU, which delimits the cavity, reflects the greater accessibility of that region compared with other sites in the RNA molecule. The identification of a binding site for small molecules in TAR offers promising perspectives for developing drugs that would block the access of TAR RNA to proteins and therefore for the design of anti-HIV agents.

Full Text

The Full Text of this article is available as a PDF (96.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aboul-ela F., Karn J., Varani G. Structure of HIV-1 TAR RNA in the absence of ligands reveals a novel conformation of the trinucleotide bulge. Nucleic Acids Res. 1996 Oct 15;24(20):3974–3981. doi: 10.1093/nar/24.20.3974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aboul-ela F., Karn J., Varani G. The structure of the human immunodeficiency virus type-1 TAR RNA reveals principles of RNA recognition by Tat protein. J Mol Biol. 1995 Oct 20;253(2):313–332. doi: 10.1006/jmbi.1995.0555. [DOI] [PubMed] [Google Scholar]
  3. Bailly C., Colson P., Houssier C., Hamy F. The binding mode of drugs to the TAR RNA of HIV-1 studied by electric linear dichroism. Nucleic Acids Res. 1996 Apr 15;24(8):1460–1464. doi: 10.1093/nar/24.8.1460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bailly C., Colson P., Hénichart J. P., Houssier C. The different binding modes of Hoechst 33258 to DNA studied by electric linear dichroism. Nucleic Acids Res. 1993 Aug 11;21(16):3705–3709. doi: 10.1093/nar/21.16.3705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baker B., Muckenthaler M., Vives E., Blanchard A., Braddock M., Nacken W., Kingsman A. J., Kingsman S. M. Identification of a novel HIV-1 TAR RNA bulge binding protein. Nucleic Acids Res. 1994 Aug 25;22(16):3365–3372. doi: 10.1093/nar/22.16.3365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Battigello J. M., Cui M., Roshong S., Carter B. J. Enediyne-mediated cleavage of RNA. Bioorg Med Chem. 1995 Jun;3(6):839–849. doi: 10.1016/0968-0896(95)00046-j. [DOI] [PubMed] [Google Scholar]
  7. Chow Christine S., Bogdan Felicia M. A Structural Basis for RNAminus signLigand Interactions. Chem Rev. 1997 Aug 5;97(5):1489–1514. doi: 10.1021/cr960415w. [DOI] [PubMed] [Google Scholar]
  8. Churcher M. J., Lamont C., Hamy F., Dingwall C., Green S. M., Lowe A. D., Butler J. G., Gait M. J., Karn J. High affinity binding of TAR RNA by the human immunodeficiency virus type-1 tat protein requires base-pairs in the RNA stem and amino acid residues flanking the basic region. J Mol Biol. 1993 Mar 5;230(1):90–110. doi: 10.1006/jmbi.1993.1128. [DOI] [PubMed] [Google Scholar]
  9. Dingwall C., Ernberg I., Gait M. J., Green S. M., Heaphy S., Karn J., Lowe A. D., Singh M., Skinner M. A. HIV-1 tat protein stimulates transcription by binding to a U-rich bulge in the stem of the TAR RNA structure. EMBO J. 1990 Dec;9(12):4145–4153. doi: 10.1002/j.1460-2075.1990.tb07637.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gait M. J., Karn J. RNA recognition by the human immunodeficiency virus Tat and Rev proteins. Trends Biochem Sci. 1993 Jul;18(7):255–259. doi: 10.1016/0968-0004(93)90176-n. [DOI] [PubMed] [Google Scholar]
  11. Hamy F., Felder E. R., Heizmann G., Lazdins J., Aboul-ela F., Varani G., Karn J., Klimkait T. An inhibitor of the Tat/TAR RNA interaction that effectively suppresses HIV-1 replication. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3548–3553. doi: 10.1073/pnas.94.8.3548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Moon J. H., Kim S. K., Sehlstedt U., Rodger A., Nordén B. DNA structural features responsible for sequence-dependent binding geometries of Hoechst 33258. Biopolymers. 1996 May;38(5):593–606. doi: 10.1002/(SICI)1097-0282(199605)38:5%3C593::AID-BIP5%3E3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  13. Pearson L., Chen C. B., Gaynor R. P., Sigman D. S. Footprinting RNA-protein complexes following gel retardation assays: application to the R-17-procoat-RNA and tat--TAR interactions. Nucleic Acids Res. 1994 Jun 25;22(12):2255–2263. doi: 10.1093/nar/22.12.2255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Portugal J., Waring M. J. Comparison of binding sites in DNA for berenil, netropsin and distamycin. A footprinting study. Eur J Biochem. 1987 Sep 1;167(2):281–289. doi: 10.1111/j.1432-1033.1987.tb13334.x. [DOI] [PubMed] [Google Scholar]
  15. Selby M. J., Bain E. S., Luciw P. A., Peterlin B. M. Structure, sequence, and position of the stem-loop in tar determine transcriptional elongation by tat through the HIV-1 long terminal repeat. Genes Dev. 1989 Apr;3(4):547–558. doi: 10.1101/gad.3.4.547. [DOI] [PubMed] [Google Scholar]
  16. Tanious F. A., Veal J. M., Buczak H., Ratmeyer L. S., Wilson W. D. DAPI (4',6-diamidino-2-phenylindole) binds differently to DNA and RNA: minor-groove binding at AT sites and intercalation at AU sites. Biochemistry. 1992 Mar 31;31(12):3103–3112. doi: 10.1021/bi00127a010. [DOI] [PubMed] [Google Scholar]
  17. Wang Z., Rana T. M. RNA conformation in the Tat-TAR complex determined by site-specific photo-cross-linking. Biochemistry. 1996 May 21;35(20):6491–6499. doi: 10.1021/bi960037p. [DOI] [PubMed] [Google Scholar]
  18. Weeks K. M., Crothers D. M. RNA recognition by Tat-derived peptides: interaction in the major groove? Cell. 1991 Aug 9;66(3):577–588. doi: 10.1016/0092-8674(81)90020-9. [DOI] [PubMed] [Google Scholar]
  19. White S. A., Draper D. E. Effects of single-base bulges on intercalator binding to small RNA and DNA hairpins and a ribosomal RNA fragment. Biochemistry. 1989 Feb 21;28(4):1892–1897. doi: 10.1021/bi00430a069. [DOI] [PubMed] [Google Scholar]
  20. White S. A., Draper D. E. Single base bulges in small RNA hairpins enhance ethidium binding and promote an allosteric transition. Nucleic Acids Res. 1987 May 26;15(10):4049–4064. doi: 10.1093/nar/15.10.4049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wilson W. D., Ratmeyer L., Zhao M., Strekowski L., Boykin D. The search for structure-specific nucleic acid-interactive drugs: effects of compound structure on RNA versus DNA interaction strength. Biochemistry. 1993 Apr 20;32(15):4098–4104. doi: 10.1021/bi00066a035. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES