Skip to main content
Genetics logoLink to Genetics
. 2004 May;167(1):263–273. doi: 10.1534/genetics.167.1.263

Mutational analysis of the Drosophila DNA repair and recombination gene mei-9.

Ozlem Yildiz 1, Hutton Kearney 1, Benjamin C Kramer 1, Jeff J Sekelsky 1
PMCID: PMC1470841  PMID: 15166153

Abstract

Drosophila mei-9 is essential for several DNA repair and recombination pathways, including nucleotide excision repair (NER), interstrand crosslink repair, and meiotic recombination. To better understand the role of MEI-9 in these processes, we characterized 10 unique mutant alleles of mei-9. These include a P-element insertion that disrupts repair functions but not the meiotic function; three nonsense mutations, one of which has nearly wild-type levels of protein; three missense mutations, one of which disrupts the meiotic function but not repair functions; two small in-frame deletions; and one frameshift.

Full Text

The Full Text of this article is available as a PDF (448.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams Melissa D., McVey Mitch, Sekelsky Jeff J. Drosophila BLM in double-strand break repair by synthesis-dependent strand annealing. Science. 2003 Jan 10;299(5604):265–267. doi: 10.1126/science.1077198. [DOI] [PubMed] [Google Scholar]
  2. Allers T., Lichten M. Differential timing and control of noncrossover and crossover recombination during meiosis. Cell. 2001 Jul 13;106(1):47–57. doi: 10.1016/s0092-8674(01)00416-0. [DOI] [PubMed] [Google Scholar]
  3. Araj H., Smith P. D. Positional cloning of the Drosophila melanogaster mei-9 gene, the putative homolog of the Saccharomyces cerevisiae RAD1 gene. Mutat Res. 1996 Dec 2;364(3):209–215. doi: 10.1016/s0921-8777(96)00034-1. [DOI] [PubMed] [Google Scholar]
  4. Aravind L., Walker D. R., Koonin E. V. Conserved domains in DNA repair proteins and evolution of repair systems. Nucleic Acids Res. 1999 Mar 1;27(5):1223–1242. doi: 10.1093/nar/27.5.1223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baker B. S., Carpenter A. T. Genetic analysis of sex chromosomal meiotic mutants in Drosophilia melanogaster. Genetics. 1972 Jun;71(2):255–286. doi: 10.1093/genetics/71.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Baker B. S., Carpenter A. T., Ripoll P. The Utilization during Mitotic Cell Division of Loci Controlling Meiotic Recombination and Disjunction in DROSOPHILA MELANOGASTER. Genetics. 1978 Nov;90(3):531–578. doi: 10.1093/genetics/90.3.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bardwell A. J., Bardwell L., Johnson D. K., Friedberg E. C. Yeast DNA recombination and repair proteins Rad1 and Rad10 constitute a complex in vivo mediated by localized hydrophobic domains. Mol Microbiol. 1993 Jun;8(6):1177–1188. doi: 10.1111/j.1365-2958.1993.tb01662.x. [DOI] [PubMed] [Google Scholar]
  8. Bardwell A. J., Bardwell L., Tomkinson A. E., Friedberg E. C. Specific cleavage of model recombination and repair intermediates by the yeast Rad1-Rad10 DNA endonuclease. Science. 1994 Sep 30;265(5181):2082–2085. doi: 10.1126/science.8091230. [DOI] [PubMed] [Google Scholar]
  9. Borts R. H., Haber J. E. Meiotic recombination in yeast: alteration by multiple heterozygosities. Science. 1987 Sep 18;237(4821):1459–1465. doi: 10.1126/science.2820060. [DOI] [PubMed] [Google Scholar]
  10. Boyd J. B., Golino M. D., Nguyen T. D., Green M. M. Isolation and characterization of X-linked mutants of Drosophila melanogaster which are sensitive to mutagens. Genetics. 1976 Nov;84(3):485–506. doi: 10.1093/genetics/84.3.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Boyd J. B., Golino M. D., Setlow R. B. The mei-9 alpha mutant of Drosophila melanogaster increases mutagen sensitivity and decreases excision repair. Genetics. 1976 Nov;84(3):527–544. doi: 10.1093/genetics/84.3.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Carpenter A. T., Baker B. S. On the Control of the Distribution of Meiotic Exchange in DROSOPHILA MELANOGASTER. Genetics. 1982 May;101(1):81–89. doi: 10.1093/genetics/101.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Carpenter A. T. Mismatch repair, gene conversion, and crossing-over in two recombination-defective mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1982 Oct;79(19):5961–5965. doi: 10.1073/pnas.79.19.5961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Carpenter A. T., Sandler L. On recombination-defective meiotic mutants in Drosophila melanogaster. Genetics. 1974 Mar;76(3):453–475. doi: 10.1093/genetics/76.3.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Curtis D., Bender W. Gene conversion in Drosophila and the effects of the meiotic mutants mei-9 and mei-218. Genetics. 1991 Apr;127(4):739–746. doi: 10.1093/genetics/127.4.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Curtis D., Clark S. H., Chovnick A., Bender W. Molecular analysis of recombination events in Drosophila. Genetics. 1989 Jul;122(3):653–661. doi: 10.1093/genetics/122.3.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Enzlin Jacqueline H., Schärer Orlando D. The active site of the DNA repair endonuclease XPF-ERCC1 forms a highly conserved nuclease motif. EMBO J. 2002 Apr 15;21(8):2045–2053. doi: 10.1093/emboj/21.8.2045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gaillard P. H., Wood R. D. Activity of individual ERCC1 and XPF subunits in DNA nucleotide excision repair. Nucleic Acids Res. 2001 Feb 15;29(4):872–879. doi: 10.1093/nar/29.4.872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Graf U., Vogel E., Biber U. P., Würgler F. E. Genetic control of mutagen sensitivity in Drosophila melanogaster: a new allele at the mei-9 locus on the X-chromosome. Mutat Res. 1979 Jan;59(1):129–133. doi: 10.1016/0027-5107(79)90199-4. [DOI] [PubMed] [Google Scholar]
  20. Habraken Y., Sung P., Prakash L., Prakash S. Holliday junction cleavage by yeast Rad1 protein. Nature. 1994 Oct 6;371(6497):531–534. doi: 10.1038/371531a0. [DOI] [PubMed] [Google Scholar]
  21. Hall J. C. Chromosome segregation influenced by two alleles of the meiotic mutant c(3)G in Drosophila melanogaster. Genetics. 1972 Jul;71(3):367–400. doi: 10.1093/genetics/71.3.367. [DOI] [PubMed] [Google Scholar]
  22. Hilliker A. J., Clark S. H., Chovnick A. The effect of DNA sequence polymorphisms on intragenic recombination in the rosy locus of Drosophila melanogaster. Genetics. 1991 Nov;129(3):779–781. doi: 10.1093/genetics/129.3.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hunter N., Kleckner N. The single-end invasion: an asymmetric intermediate at the double-strand break to double-holliday junction transition of meiotic recombination. Cell. 2001 Jul 13;106(1):59–70. doi: 10.1016/s0092-8674(01)00430-5. [DOI] [PubMed] [Google Scholar]
  24. Kurkulos M., Weinberg J. M., Roy D., Mount S. M. P element-mediated in vivo deletion analysis of white-apricot: deletions between direct repeats are strongly favored. Genetics. 1994 Mar;136(3):1001–1011. doi: 10.1093/genetics/136.3.1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mason J. M., Green M. M., Shaw K. E., Boyd J. B. Genetic analysis of X-linked mutagen-sensitive mutants of Drosophila melanogaster. Mutat Res. 1981 May;81(3):329–343. doi: 10.1016/0027-5107(81)90120-2. [DOI] [PubMed] [Google Scholar]
  26. McKim K. S., Dahmus J. B., Hawley R. S. Cloning of the Drosophila melanogaster meiotic recombination gene mei-218: a genetic and molecular analysis of interval 15E. Genetics. 1996 Sep;144(1):215–228. doi: 10.1093/genetics/144.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. McKim K. S., Hayashi-Hagihara A. mei-W68 in Drosophila melanogaster encodes a Spo11 homolog: evidence that the mechanism for initiating meiotic recombination is conserved. Genes Dev. 1998 Sep 15;12(18):2932–2942. doi: 10.1101/gad.12.18.2932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nassif N., Penney J., Pal S., Engels W. R., Gloor G. B. Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Mol Cell Biol. 1994 Mar;14(3):1613–1625. doi: 10.1128/mcb.14.3.1613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nishino Tatsuya, Komori Kayoko, Ishino Yoshizumi, Morikawa Kosuke. X-ray and biochemical anatomy of an archaeal XPF/Rad1/Mus81 family nuclease: similarity between its endonuclease domain and restriction enzymes. Structure. 2003 Apr;11(4):445–457. doi: 10.1016/s0969-2126(03)00046-7. [DOI] [PubMed] [Google Scholar]
  30. Osman Fekret, Dixon Julie, Doe Claudette L., Whitby Matthew C. Generating crossovers by resolution of nicked Holliday junctions: a role for Mus81-Eme1 in meiosis. Mol Cell. 2003 Sep;12(3):761–774. doi: 10.1016/s1097-2765(03)00343-5. [DOI] [PubMed] [Google Scholar]
  31. Park C. H., Bessho T., Matsunaga T., Sancar A. Purification and characterization of the XPF-ERCC1 complex of human DNA repair excision nuclease. J Biol Chem. 1995 Sep 29;270(39):22657–22660. doi: 10.1074/jbc.270.39.22657. [DOI] [PubMed] [Google Scholar]
  32. Pastink A., Heemskerk E., Nivard M. J., van Vliet C. J., Vogel E. W. Mutational specificity of ethyl methanesulfonate in excision-repair-proficient and -deficient strains of Drosophila melanogaster. Mol Gen Genet. 1991 Oct;229(2):213–218. doi: 10.1007/BF00272158. [DOI] [PubMed] [Google Scholar]
  33. Rutherford S. L., Carpenter A. T. The effect of sequence homozygosity on the frequency of X-chromosomal exchange in Drosophila melanogaster females. Genetics. 1988 Nov;120(3):725–732. doi: 10.1093/genetics/120.3.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Samson M. L., Lisbin M. J., White K. Two distinct temperature-sensitive alleles at the elav locus of Drosophila are suppressed nonsense mutations of the same tryptophan codon. Genetics. 1995 Nov;141(3):1101–1111. doi: 10.1093/genetics/141.3.1101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sekelsky J. J., Hollis K. J., Eimerl A. I., Burtis K. C., Hawley R. S. Nucleotide excision repair endonuclease genes in Drosophila melanogaster. Mutat Res. 2000 Apr 28;459(3):219–228. doi: 10.1016/s0921-8777(99)00075-0. [DOI] [PubMed] [Google Scholar]
  36. Sekelsky J. J., McKim K. S., Chin G. M., Hawley R. S. The Drosophila meiotic recombination gene mei-9 encodes a homologue of the yeast excision repair protein Rad1. Genetics. 1995 Oct;141(2):619–627. doi: 10.1093/genetics/141.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sekelsky J. J., McKim K. S., Messina L., French R. L., Hurley W. D., Arbel T., Chin G. M., Deneen B., Force S. J., Hari K. L. Identification of novel Drosophila meiotic genes recovered in a P-element screen. Genetics. 1999 Jun;152(2):529–542. doi: 10.1093/genetics/152.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sijbers A. M., de Laat W. L., Ariza R. R., Biggerstaff M., Wei Y. F., Moggs J. G., Carter K. C., Shell B. K., Evans E., de Jong M. C. Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell. 1996 Sep 6;86(5):811–822. doi: 10.1016/s0092-8674(00)80155-5. [DOI] [PubMed] [Google Scholar]
  39. Stahl F. W. The Holliday junction on its thirtieth anniversary. Genetics. 1994 Oct;138(2):241–246. doi: 10.1093/genetics/138.2.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Thaler D. S., Stahl M. M., Stahl F. W. Tests of the double-strand-break repair model for red-mediated recombination of phage lambda and plasmid lambda dv. Genetics. 1987 Aug;116(4):501–511. doi: 10.1093/genetics/116.4.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Washburn T., O'Tousa J. E. Nonsense suppression of the major rhodopsin gene of Drosophila. Genetics. 1992 Mar;130(3):585–595. doi: 10.1093/genetics/130.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yamamoto A. H., Brodberg R. K., Banga S. S., Boyd J. B., Mason J. M. Recovery and characterization of hybrid dysgenesis-induced mei-9 and mei-41 alleles of Drosophila melanogaster. Mutat Res. 1990 Mar;229(1):17–28. doi: 10.1016/0027-5107(90)90004-n. [DOI] [PubMed] [Google Scholar]
  43. Yildiz Ozlem, Majumder Samarpan, Kramer Benjamin, Sekelsky Jeff J. Drosophila MUS312 interacts with the nucleotide excision repair endonuclease MEI-9 to generate meiotic crossovers. Mol Cell. 2002 Dec;10(6):1503–1509. doi: 10.1016/s1097-2765(02)00782-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. de Laat W. L., Appeldoorn E., Jaspers N. G., Hoeijmakers J. H. DNA structural elements required for ERCC1-XPF endonuclease activity. J Biol Chem. 1998 Apr 3;273(14):7835–7842. doi: 10.1074/jbc.273.14.7835. [DOI] [PubMed] [Google Scholar]
  45. de Laat W. L., Jaspers N. G., Hoeijmakers J. H. Molecular mechanism of nucleotide excision repair. Genes Dev. 1999 Apr 1;13(7):768–785. doi: 10.1101/gad.13.7.768. [DOI] [PubMed] [Google Scholar]
  46. de Laat W. L., Sijbers A. M., Odijk H., Jaspers N. G., Hoeijmakers J. H. Mapping of interaction domains between human repair proteins ERCC1 and XPF. Nucleic Acids Res. 1998 Sep 15;26(18):4146–4152. doi: 10.1093/nar/26.18.4146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. van Vuuren A. J., Appeldoorn E., Odijk H., Yasui A., Jaspers N. G., Bootsma D., Hoeijmakers J. H. Evidence for a repair enzyme complex involving ERCC1 and complementing activities of ERCC4, ERCC11 and xeroderma pigmentosum group F. EMBO J. 1993 Sep;12(9):3693–3701. doi: 10.1002/j.1460-2075.1993.tb06044.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES