Skip to main content
Genetics logoLink to Genetics
. 2004 May;167(1):107–117. doi: 10.1534/genetics.167.1.107

Yeast Mn2+ transporter, Smf1p, is regulated by ubiquitin-dependent vacuolar protein sorting.

Lorena Eguez 1, Young-Sook Chung 1, Ajay Kuchibhatla 1, Madan Paidhungat 1, Stephen Garrett 1
PMCID: PMC1470849  PMID: 15166140

Abstract

Conditional cdc1(Ts) mutants of S. cerevisiae arrest with a phenotype similar to that exhibited by Mn(2+)-depleted cells. Sequence similarity between Cdc1p and a class of Mn(2+)-dependent phosphoesterases, as well as the observation that conditional cdc1(Ts) growth can be ameliorated by Mn(2+) supplement, suggests that Cdc1p activity is sensitive to intracellular Mn(2+) levels. This article identifies several previously uncharacterized cdc1(Ts) suppressors as class E vps (vacuolar protein sorting) mutants and shows that these, as well as other vps mutants, accumulate high levels of intracellular Mn(2+). Yeast VPS genes play a role in delivery of membrane transporters to the vacuole for degradation, and we show that the vps mutants accumulate elevated levels of the high-affinity Mn(2+) transporter Smf1p. cdc1(Ts) conditional growth is also alleviated by mutations, including doa4 and ubc4, that compromise protein ubiquitination, and these ubiquitination defects are associated with Smf1p accumulation. Epistasis studies show that these suppressors require functional Smf1p to alleviate the cdc1(Ts) growth defect, whereas Smf1p is dispensable for cdc1(Ts) suppression by a mutation (cos16/per1) that does not influence intracellular Mn(2+) levels. Because Smf1p is ubiquitinated in vivo, we propose that Smf1p is targeted to the vacuole for degradation by ubiquitination-dependent protein sorting.

Full Text

The Full Text of this article is available as a PDF (237.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amerik A. Y., Nowak J., Swaminathan S., Hochstrasser M. The Doa4 deubiquitinating enzyme is functionally linked to the vacuolar protein-sorting and endocytic pathways. Mol Biol Cell. 2000 Oct;11(10):3365–3380. doi: 10.1091/mbc.11.10.3365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Babst M., Sato T. K., Banta L. M., Emr S. D. Endosomal transport function in yeast requires a novel AAA-type ATPase, Vps4p. EMBO J. 1997 Apr 15;16(8):1820–1831. doi: 10.1093/emboj/16.8.1820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Babst M., Wendland B., Estepa E. J., Emr S. D. The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J. 1998 Jun 1;17(11):2982–2993. doi: 10.1093/emboj/17.11.2982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Babst Markus, Katzmann David J., Estepa-Sabal Eden J., Meerloo Timo, Emr Scott D. Escrt-III: an endosome-associated heterooligomeric protein complex required for mvb sorting. Dev Cell. 2002 Aug;3(2):271–282. doi: 10.1016/s1534-5807(02)00220-4. [DOI] [PubMed] [Google Scholar]
  5. Banta L. M., Robinson J. S., Klionsky D. J., Emr S. D. Organelle assembly in yeast: characterization of yeast mutants defective in vacuolar biogenesis and protein sorting. J Cell Biol. 1988 Oct;107(4):1369–1383. doi: 10.1083/jcb.107.4.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bryant N. J., Stevens T. H. Vacuole biogenesis in Saccharomyces cerevisiae: protein transport pathways to the yeast vacuole. Microbiol Mol Biol Rev. 1998 Mar;62(1):230–247. doi: 10.1128/mmbr.62.1.230-247.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dürr G., Strayle J., Plemper R., Elbs S., Klee S. K., Catty P., Wolf D. H., Rudolph H. K. The medial-Golgi ion pump Pmr1 supplies the yeast secretory pathway with Ca2+ and Mn2+ required for glycosylation, sorting, and endoplasmic reticulum-associated protein degradation. Mol Biol Cell. 1998 May;9(5):1149–1162. doi: 10.1091/mbc.9.5.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Galan J. M., Moreau V., Andre B., Volland C., Haguenauer-Tsapis R. Ubiquitination mediated by the Npi1p/Rsp5p ubiquitin-protein ligase is required for endocytosis of the yeast uracil permease. J Biol Chem. 1996 May 3;271(18):10946–10952. doi: 10.1074/jbc.271.18.10946. [DOI] [PubMed] [Google Scholar]
  9. Garrett S., Menold M. M., Broach J. R. The Saccharomyces cerevisiae YAK1 gene encodes a protein kinase that is induced by arrest early in the cell cycle. Mol Cell Biol. 1991 Aug;11(8):4045–4052. doi: 10.1128/mcb.11.8.4045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Halbrook J., Hoekstra M. F. Mutations in the Saccharomyces cerevisiae CDC1 gene affect double-strand-break-induced intrachromosomal recombination. Mol Cell Biol. 1994 Dec;14(12):8037–8050. doi: 10.1128/mcb.14.12.8037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Helliwell S. B., Losko S., Kaiser C. A. Components of a ubiquitin ligase complex specify polyubiquitination and intracellular trafficking of the general amino acid permease. J Cell Biol. 2001 May 14;153(4):649–662. doi: 10.1083/jcb.153.4.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hemenway C. S., Dolinski K., Cardenas M. E., Hiller M. A., Jones E. W., Heitman J. vph6 mutants of Saccharomyces cerevisiae require calcineurin for growth and are defective in vacuolar H(+)-ATPase assembly. Genetics. 1995 Nov;141(3):833–844. doi: 10.1093/genetics/141.3.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hicke L. Gettin' down with ubiquitin: turning off cell-surface receptors, transporters and channels. Trends Cell Biol. 1999 Mar;9(3):107–112. doi: 10.1016/s0962-8924(98)01491-3. [DOI] [PubMed] [Google Scholar]
  14. Hochstrasser M. Ubiquitin-dependent protein degradation. Annu Rev Genet. 1996;30:405–439. doi: 10.1146/annurev.genet.30.1.405. [DOI] [PubMed] [Google Scholar]
  15. Huh Won-Ki, Falvo James V., Gerke Luke C., Carroll Adam S., Howson Russell W., Weissman Jonathan S., O'Shea Erin K. Global analysis of protein localization in budding yeast. Nature. 2003 Oct 16;425(6959):686–691. doi: 10.1038/nature02026. [DOI] [PubMed] [Google Scholar]
  16. Katzmann D. J., Babst M., Emr S. D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell. 2001 Jul 27;106(2):145–155. doi: 10.1016/s0092-8674(01)00434-2. [DOI] [PubMed] [Google Scholar]
  17. Kranz A., Kinner A., Kölling R. A family of small coiled-coil-forming proteins functioning at the late endosome in yeast. Mol Biol Cell. 2001 Mar;12(3):711–723. doi: 10.1091/mbc.12.3.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lapinskas P. J., Cunningham K. W., Liu X. F., Fink G. R., Culotta V. C. Mutations in PMR1 suppress oxidative damage in yeast cells lacking superoxide dismutase. Mol Cell Biol. 1995 Mar;15(3):1382–1388. doi: 10.1128/mcb.15.3.1382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lapinskas P. J., Lin S. J., Culotta V. C. The role of the Saccharomyces cerevisiae CCC1 gene in the homeostasis of manganese ions. Mol Microbiol. 1996 Aug;21(3):519–528. doi: 10.1111/j.1365-2958.1996.tb02561.x. [DOI] [PubMed] [Google Scholar]
  20. Lin S. J., Culotta V. C. Suppression of oxidative damage by Saccharomyces cerevisiae ATX2, which encodes a manganese-trafficking protein that localizes to Golgi-like vesicles. Mol Cell Biol. 1996 Nov;16(11):6303–6312. doi: 10.1128/mcb.16.11.6303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Liu X. F., Culotta V. C. Mutational analysis of Saccharomyces cerevisiae Smf1p, a member of the Nramp family of metal transporters. J Mol Biol. 1999 Jun 18;289(4):885–891. doi: 10.1006/jmbi.1999.2815. [DOI] [PubMed] [Google Scholar]
  22. Luo W. j., Chang A. Novel genes involved in endosomal traffic in yeast revealed by suppression of a targeting-defective plasma membrane ATPase mutant. J Cell Biol. 1997 Aug 25;138(4):731–746. doi: 10.1083/jcb.138.4.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Medintz I., Jiang H., Michels C. A. The role of ubiquitin conjugation in glucose-induced proteolysis of Saccharomyces maltose permease. J Biol Chem. 1998 Dec 18;273(51):34454–34462. doi: 10.1074/jbc.273.51.34454. [DOI] [PubMed] [Google Scholar]
  24. Nakayama K., Nagasu T., Shimma Y., Kuromitsu J., Jigami Y. OCH1 encodes a novel membrane bound mannosyltransferase: outer chain elongation of asparagine-linked oligosaccharides. EMBO J. 1992 Jul;11(7):2511–2519. doi: 10.1002/j.1460-2075.1992.tb05316.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Paidhungat M., Garrett S. A homolog of mammalian, voltage-gated calcium channels mediates yeast pheromone-stimulated Ca2+ uptake and exacerbates the cdc1(Ts) growth defect. Mol Cell Biol. 1997 Nov;17(11):6339–6347. doi: 10.1128/mcb.17.11.6339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Paidhungat M., Garrett S. Cdc1 and the vacuole coordinately regulate Mn2+ homeostasis in the yeast Saccharomyces cerevisiae. Genetics. 1998 Apr;148(4):1787–1798. doi: 10.1093/genetics/148.4.1787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Paidhungat M., Garrett S. Cdc1 is required for growth and Mn2+ regulation in Saccharomyces cerevisiae. Genetics. 1998 Apr;148(4):1777–1786. doi: 10.1093/genetics/148.4.1777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Raymond C. K., Howald-Stevenson I., Vater C. A., Stevens T. H. Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol Biol Cell. 1992 Dec;3(12):1389–1402. doi: 10.1091/mbc.3.12.1389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rose M. D., Novick P., Thomas J. H., Botstein D., Fink G. R. A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene. 1987;60(2-3):237–243. doi: 10.1016/0378-1119(87)90232-0. [DOI] [PubMed] [Google Scholar]
  30. Rossanese O. W., Reinke C. A., Bevis B. J., Hammond A. T., Sears I. B., O'Connor J., Glick B. S. A role for actin, Cdc1p, and Myo2p in the inheritance of late Golgi elements in Saccharomyces cerevisiae. J Cell Biol. 2001 Apr 2;153(1):47–62. doi: 10.1083/jcb.153.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rusnak F. Manganese-activated phosphatases. Met Ions Biol Syst. 2000;37:305–343. [PubMed] [Google Scholar]
  32. Sikorski R. S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sone T., Griffiths A. J. The frost gene of Neurospora crassa is a homolog of yeast cdc1 and affects hyphal branching via manganese homeostasis. Fungal Genet Biol. 1999 Dec;28(3):227–237. doi: 10.1006/fgbi.1999.1169. [DOI] [PubMed] [Google Scholar]
  34. Springael Jean Yves, Nikko Elina, André Bruno, Marini Anne Marie. Yeast Npi3/Bro1 is involved in ubiquitin-dependent control of permease trafficking. FEBS Lett. 2002 Apr 24;517(1-3):103–109. doi: 10.1016/s0014-5793(02)02586-3. [DOI] [PubMed] [Google Scholar]
  35. Swaminathan S., Amerik A. Y., Hochstrasser M. The Doa4 deubiquitinating enzyme is required for ubiquitin homeostasis in yeast. Mol Biol Cell. 1999 Aug;10(8):2583–2594. doi: 10.1091/mbc.10.8.2583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tu J., Vallier L. G., Carlson M. Molecular and genetic analysis of the SNF7 gene in Saccharomyces cerevisiae. Genetics. 1993 Sep;135(1):17–23. doi: 10.1093/genetics/135.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wei Y., Marchi V., Wang R., Rao R. An N-terminal EF hand-like motif modulates ion transport by Pmr1, the yeast Golgi Ca(2+)/Mn(2+)-ATPase. Biochemistry. 1999 Nov 2;38(44):14534–14541. doi: 10.1021/bi9911233. [DOI] [PubMed] [Google Scholar]
  38. West A. H., Clark D. J., Martin J., Neupert W., Hartl F. U., Horwich A. L. Two related genes encoding extremely hydrophobic proteins suppress a lethal mutation in the yeast mitochondrial processing enhancing protein. J Biol Chem. 1992 Dec 5;267(34):24625–24633. [PubMed] [Google Scholar]
  39. Winkler A. A., Korstanje R., Zonneveld B. J., Hooykaas P. J., Steensma H. Y. Isolation and characterization of KIUBP2, a ubiquitin hydrolase gene of Kluyveromyces lactis that can suppress a ts-mutation in CBF2, a gene encoding a centromeric protein of Saccharomyces cerevisiae. Curr Genet. 2000 Jul;38(1):17–22. doi: 10.1007/s002940000129. [DOI] [PubMed] [Google Scholar]
  40. Yamashiro C. T., Kane P. M., Wolczyk D. F., Preston R. A., Stevens T. H. Role of vacuolar acidification in protein sorting and zymogen activation: a genetic analysis of the yeast vacuolar proton-translocating ATPase. Mol Cell Biol. 1990 Jul;10(7):3737–3749. doi: 10.1128/mcb.10.7.3737. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES