Skip to main content
Genetics logoLink to Genetics
. 2004 May;167(1):523–530. doi: 10.1534/genetics.167.1.523

Stochastic gene expression in fluctuating environments.

Mukund Thattai 1, Alexander van Oudenaarden 1
PMCID: PMC1470854  PMID: 15166174

Abstract

Stochastic mechanisms can cause a group of isogenic bacteria, each subject to identical environmental conditions, to nevertheless exhibit diverse patterns of gene expression. The resulting phenotypic subpopulations will typically have distinct growth rates. This behavior has been observed in several contexts, including sugar metabolism and pili phase variation. Under fixed environmental conditions, the net growth rate of the population is maximized when all cells are of the fastest growing phenotype, so it is unclear what fitness advantage is conferred by population heterogeneity. However, unlike ideal laboratory conditions, natural environments tend to fluctuate, either periodically or randomly. Here we use a stochastic population model to show that, during growth in such fluctuating environments, a dynamically heterogenous bacterial population can sometimes achieve a higher net growth rate than a homogenous one. By using stochastic mechanisms to sample several distinct phenotypes, the bacteria are able to anticipate and take advantage of sudden changes in their environment. However, this heterogeneity is beneficial only if the bacterial response rate is sufficiently low. Our results could be useful in the design of artificial evolution experiments and in the optimization of fermentation processes.

Full Text

The Full Text of this article is available as a PDF (132.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arkin A., Ross J., McAdams H. H. Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics. 1998 Aug;149(4):1633–1648. doi: 10.1093/genetics/149.4.1633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barkai N., Leibler S. Circadian clocks limited by noise. Nature. 2000 Jan 20;403(6767):267–268. doi: 10.1038/35002258. [DOI] [PubMed] [Google Scholar]
  3. Biggar S. R., Crabtree G. R. Cell signaling can direct either binary or graded transcriptional responses. EMBO J. 2001 Jun 15;20(12):3167–3176. doi: 10.1093/emboj/20.12.3167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blake William J., KAErn Mads, Cantor Charles R., Collins J. J. Noise in eukaryotic gene expression. Nature. 2003 Apr 10;422(6932):633–637. doi: 10.1038/nature01546. [DOI] [PubMed] [Google Scholar]
  5. Bürger R. Evolution of genetic variability and the advantage of sex and recombination in changing environments. Genetics. 1999 Oct;153(2):1055–1069. doi: 10.1093/genetics/153.2.1055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carrier T. A., Keasling J. D. Investigating autocatalytic gene expression systems through mechanistic modeling. J Theor Biol. 1999 Nov 7;201(1):25–36. doi: 10.1006/jtbi.1999.1010. [DOI] [PubMed] [Google Scholar]
  7. Cohen D. Optimizing reproduction in a randomly varying environment. J Theor Biol. 1966 Sep;12(1):119–129. doi: 10.1016/0022-5193(66)90188-3. [DOI] [PubMed] [Google Scholar]
  8. Elowitz Michael B., Levine Arnold J., Siggia Eric D., Swain Peter S. Stochastic gene expression in a single cell. Science. 2002 Aug 16;297(5584):1183–1186. doi: 10.1126/science.1070919. [DOI] [PubMed] [Google Scholar]
  9. Ferrell James E., Jr Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr Opin Cell Biol. 2002 Apr;14(2):140–148. doi: 10.1016/s0955-0674(02)00314-9. [DOI] [PubMed] [Google Scholar]
  10. Hernday Aaron, Krabbe Margareta, Braaten Bruce, Low David. Self-perpetuating epigenetic pili switches in bacteria. Proc Natl Acad Sci U S A. 2002 Aug 29;99 (Suppl 4):16470–16476. doi: 10.1073/pnas.182427199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Isaacs Farren J., Hasty Jeff, Cantor Charles R., Collins J. J. Prediction and measurement of an autoregulatory genetic module. Proc Natl Acad Sci U S A. 2003 Jun 13;100(13):7714–7719. doi: 10.1073/pnas.1332628100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kepler T. B., Elston T. C. Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys J. 2001 Dec;81(6):3116–3136. doi: 10.1016/S0006-3495(01)75949-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Menu F, Roebuck JP, Viala M. Bet-Hedging Diapause Strategies in Stochastic Environments. Am Nat. 2000 Jun;155(6):724–734. doi: 10.1086/303355. [DOI] [PubMed] [Google Scholar]
  14. Monod J. From enzymatic adaptation to allosteric transitions. Science. 1966 Oct 28;154(3748):475–483. doi: 10.1126/science.154.3748.475. [DOI] [PubMed] [Google Scholar]
  15. Novick A., Weiner M. ENZYME INDUCTION AS AN ALL-OR-NONE PHENOMENON. Proc Natl Acad Sci U S A. 1957 Jul 15;43(7):553–566. doi: 10.1073/pnas.43.7.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ozbudak Ertugrul M., Thattai Mukund, Kurtser Iren, Grossman Alan D., van Oudenaarden Alexander. Regulation of noise in the expression of a single gene. Nat Genet. 2002 Apr 22;31(1):69–73. doi: 10.1038/ng869. [DOI] [PubMed] [Google Scholar]
  17. Paulsson Johan. Multileveled selection on plasmid replication. Genetics. 2002 Aug;161(4):1373–1384. doi: 10.1093/genetics/161.4.1373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Savageau M. A. Demand theory of gene regulation. II. Quantitative application to the lactose and maltose operons of Escherichia coli. Genetics. 1998 Aug;149(4):1677–1691. doi: 10.1093/genetics/149.4.1677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shapiro J. A. Thinking about bacterial populations as multicellular organisms. Annu Rev Microbiol. 1998;52:81–104. doi: 10.1146/annurev.micro.52.1.81. [DOI] [PubMed] [Google Scholar]
  20. Siegele D. A., Hu J. C. Gene expression from plasmids containing the araBAD promoter at subsaturating inducer concentrations represents mixed populations. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8168–8172. doi: 10.1073/pnas.94.15.8168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Stumpf Michael P. H., Laidlaw Zoe, Jansen Vincent A. A. Herpes viruses hedge their bets. Proc Natl Acad Sci U S A. 2002 Oct 30;99(23):15234–15237. doi: 10.1073/pnas.232546899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tanaka Mark M., Bergstrom Carl T., Levin Bruce R. The evolution of mutator genes in bacterial populations: the roles of environmental change and timing. Genetics. 2003 Jul;164(3):843–854. doi: 10.1093/genetics/164.3.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Thattai Mukund, Shraiman Boris I. Metabolic switching in the sugar phosphotransferase system of Escherichia coli. Biophys J. 2003 Aug;85(2):744–754. doi: 10.1016/S0006-3495(03)74517-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wolf Denise M., Arkin Adam P. Fifteen minutes of fim: control of type 1 pili expression in E. coli. OMICS. 2002;6(1):91–114. doi: 10.1089/15362310252780852. [DOI] [PubMed] [Google Scholar]
  25. Wolf Denise M., Arkin Adam P. Motifs, modules and games in bacteria. Curr Opin Microbiol. 2003 Apr;6(2):125–134. doi: 10.1016/s1369-5274(03)00033-x. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES