Abstract
An alternative to suppression of stop codons for the biosynthetic insertion of non-natural amino acids has been developed. Micrococcus luteus , a Gram-positive bacterium, is incapable of translating at least two codons. One of these unused codons was inserted in a gene to act as a nonsense site. An aminoacylated tRNA was synthesized which was complementary to this codon. The gene containing the missing codon was expressed in vitro in a M.luteus transcription/translation system. Read-through of the missing codon occurred only when the complementary tRNA was included. The results demonstrate that M.luteus can be used for incorporation of amino acids via synthetically prepared aminoacylated tRNAs. The use of a M. luteus translation system provides a method for incorporation of non-natural amino acids which avoids the use of stop codons.
Full Text
The Full Text of this article is available as a PDF (68.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bain J. D., Switzer C., Chamberlin A. R., Benner S. A. Ribosome-mediated incorporation of a non-standard amino acid into a peptide through expansion of the genetic code. Nature. 1992 Apr 9;356(6369):537–539. doi: 10.1038/356537a0. [DOI] [PubMed] [Google Scholar]
- Baldini G., Martoglio B., Schachenmann A., Zugliani C., Brunner J. Mischarging Escherichia coli tRNAPhe with L-4'-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenylalanine, a photoactivatable analogue of phenylalanine. Biochemistry. 1988 Oct 4;27(20):7951–7959. doi: 10.1021/bi00420a054. [DOI] [PubMed] [Google Scholar]
- Bonetti B., Fu L., Moon J., Bedwell D. M. The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae. J Mol Biol. 1995 Aug 18;251(3):334–345. doi: 10.1006/jmbi.1995.0438. [DOI] [PubMed] [Google Scholar]
- Buckingham R. H. Codon context and protein synthesis: enhancements of the genetic code. Biochimie. 1994;76(5):351–354. doi: 10.1016/0300-9084(94)90108-2. [DOI] [PubMed] [Google Scholar]
- Cload S. T., Liu D. R., Froland W. A., Schultz P. G. Development of improved tRNAs for in vitro biosynthesis of proteins containing unnatural amino acids. Chem Biol. 1996 Dec;3(12):1033–1038. doi: 10.1016/s1074-5521(96)90169-6. [DOI] [PubMed] [Google Scholar]
- Farwell M. A., Rabinowitz J. C. Protein synthesis in vitro by Micrococcus luteus. J Bacteriol. 1991 Jun;173(11):3514–3522. doi: 10.1128/jb.173.11.3514-3522.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farwell M. A., Rabinowitz J. C. Protein synthesis in vitro by Micrococcus luteus. J Bacteriol. 1991 Jun;173(11):3514–3522. doi: 10.1128/jb.173.11.3514-3522.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grodberg J., Dunn J. J. ompT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. J Bacteriol. 1988 Mar;170(3):1245–1253. doi: 10.1128/jb.170.3.1245-1253.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagan K. W., Ruiz-Echevarria M. J., Quan Y., Peltz S. W. Characterization of cis-acting sequences and decay intermediates involved in nonsense-mediated mRNA turnover. Mol Cell Biol. 1995 Feb;15(2):809–823. doi: 10.1128/mcb.15.2.809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hou Y. M., Schimmel P. A simple structural feature is a major determinant of the identity of a transfer RNA. Nature. 1988 May 12;333(6169):140–145. doi: 10.1038/333140a0. [DOI] [PubMed] [Google Scholar]
- Jackson R. J., Hunt T. Preparation and use of nuclease-treated rabbit reticulocyte lysates for the translation of eukaryotic messenger RNA. Methods Enzymol. 1983;96:50–74. doi: 10.1016/s0076-6879(83)96008-1. [DOI] [PubMed] [Google Scholar]
- Kano A., Andachi Y., Ohama T., Osawa S. Novel anticodon composition of transfer RNAs in Micrococcus luteus, a bacterium with a high genomic G + C content. Correlation with codon usage. J Mol Biol. 1991 Sep 20;221(2):387–401. doi: 10.1016/0022-2836(91)80061-x. [DOI] [PubMed] [Google Scholar]
- Kano A., Ohama T., Abe R., Osawa S. Unassigned or nonsense codons in Micrococcus luteus. J Mol Biol. 1993 Mar 5;230(1):51–56. doi: 10.1006/jmbi.1993.1125. [DOI] [PubMed] [Google Scholar]
- Ma C., Kudlicki W., Odom O. W., Kramer G., Hardesty B. In vitro protein engineering using synthetic tRNA(Ala) with different anticodons. Biochemistry. 1993 Aug 10;32(31):7939–7945. doi: 10.1021/bi00082a015. [DOI] [PubMed] [Google Scholar]
- Milligan J. F., Uhlenbeck O. C. Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 1989;180:51–62. doi: 10.1016/0076-6879(89)80091-6. [DOI] [PubMed] [Google Scholar]
- Mottagui-Tabar S., Björnsson A., Isaksson L. A. The second to last amino acid in the nascent peptide as a codon context determinant. EMBO J. 1994 Jan 1;13(1):249–257. doi: 10.1002/j.1460-2075.1994.tb06255.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muto A., Andachi Y., Yuzawa H., Yamao F., Osawa S. The organization and evolution of transfer RNA genes in Mycoplasma capricolum. Nucleic Acids Res. 1990 Sep 11;18(17):5037–5043. doi: 10.1093/nar/18.17.5037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noren C. J., Anthony-Cahill S. J., Griffith M. C., Schultz P. G. A general method for site-specific incorporation of unnatural amino acids into proteins. Science. 1989 Apr 14;244(4901):182–188. doi: 10.1126/science.2649980. [DOI] [PubMed] [Google Scholar]
- Oba T., Andachi Y., Muto A., Osawa S. CGG: an unassigned or nonsense codon in Mycoplasma capricolum. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):921–925. doi: 10.1073/pnas.88.3.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohama T., Muto A., Osawa S. Role of GC-biased mutation pressure on synonymous codon choice in Micrococcus luteus, a bacterium with a high genomic GC-content. Nucleic Acids Res. 1990 Mar 25;18(6):1565–1569. doi: 10.1093/nar/18.6.1565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Park S. J., Hou Y. M., Schimmel P. A single base pair affects binding and catalytic parameters in the molecular recognition of a transfer RNA. Biochemistry. 1989 Mar 21;28(6):2740–2746. doi: 10.1021/bi00432a056. [DOI] [PubMed] [Google Scholar]
- Poole E. S., Brown C. M., Tate W. P. The identity of the base following the stop codon determines the efficiency of in vivo translational termination in Escherichia coli. EMBO J. 1995 Jan 3;14(1):151–158. doi: 10.1002/j.1460-2075.1995.tb06985.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schenborn E. T., Mierendorf R. C., Jr A novel transcription property of SP6 and T7 RNA polymerases: dependence on template structure. Nucleic Acids Res. 1985 Sep 11;13(17):6223–6236. doi: 10.1093/nar/13.17.6223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shields D. C., Sharp P. M. Synonymous codon usage in Bacillus subtilis reflects both translational selection and mutational biases. Nucleic Acids Res. 1987 Oct 12;15(19):8023–8040. doi: 10.1093/nar/15.19.8023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silberklang M., Gillum A. M., RajBhandary U. L. Use of in vitro 32P labeling in the sequence analysis of nonradioactive tRNAs. Methods Enzymol. 1979;59:58–109. doi: 10.1016/0076-6879(79)59072-7. [DOI] [PubMed] [Google Scholar]
- Wilson M. J., Hatfield D. L. Incorporation of modified amino acids into proteins in vivo. Biochim Biophys Acta. 1984 Apr 5;781(3):205–215. doi: 10.1016/0167-4781(84)90085-x. [DOI] [PubMed] [Google Scholar]
- Yarus M., Cline S., Raftery L., Wier P., Bradley D. The translational efficiency of tRNA is a property of the anticodon arm. J Biol Chem. 1986 Aug 15;261(23):10496–10505. [PubMed] [Google Scholar]