Skip to main content
Genetics logoLink to Genetics
. 2004 May;167(1):203–206. doi: 10.1534/genetics.167.1.203

The Zuker collection: a resource for the analysis of autosomal gene function in Drosophila melanogaster.

Edmund J Koundakjian 1, David M Cowan 1, Robert W Hardy 1, Ann H Becker 1
PMCID: PMC1470872  PMID: 15166147

Abstract

The majority of genes of multicellular organisms encode proteins with functions that are not required for viability but contribute to important physiological functions such as behavior and reproduction. It is estimated that 75% of the genes of Drosophila melanogaster are nonessential. Here we report on a strategy used to establish a large collection of stocks that is suitable for the recovery of mutations in such genes. From approximately 72,000 F(3) cultures segregating for autosomes heavily treated with ethyl methanesulfonate (EMS), approximately 12,000 lines in which the treated second or third chromosome survived in homozygous condition were selected. The dose of EMS induced an estimated rate of 1.2-1.5 x 10(-3) mutations/gene and predicts five to six nonessential gene mutations per chromosome and seven to nine alleles per locus in the samples of 6000 second chromosomes and 6000 third chromosomes. Due to mosaic mutations induced in the initial exposure to the mutagen, many of the lines are segregating or are now fixed for lethal mutations on the mutagenized chromosome. The features of this collection, known as the Zuker collection, make it a valuable resource for forward and reverse genetic screens for mutations affecting a wide array of biological functions.

Full Text

The Full Text of this article is available as a PDF (62.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acharya J. K., Labarca P., Delgado R., Jalink K., Zuker C. S. Synaptic defects and compensatory regulation of inositol metabolism in inositol polyphosphate 1-phosphatase mutants. Neuron. 1998 Jun;20(6):1219–1229. doi: 10.1016/s0896-6273(00)80502-4. [DOI] [PubMed] [Google Scholar]
  2. Bentley A., MacLennan B., Calvo J., Dearolf C. R. Targeted recovery of mutations in Drosophila. Genetics. 2000 Nov;156(3):1169–1173. doi: 10.1093/genetics/156.3.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brizuela B. J., Elfring L., Ballard J., Tamkun J. W., Kennison J. A. Genetic analysis of the brahma gene of Drosophila melanogaster and polytene chromosome subdivisions 72AB. Genetics. 1994 Jul;137(3):803–813. doi: 10.1093/genetics/137.3.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dolph P. J., Ranganathan R., Colley N. J., Hardy R. W., Socolich M., Zuker C. S. Arrestin function in inactivation of G protein-coupled receptor rhodopsin in vivo. Science. 1993 Jun 25;260(5116):1910–1916. doi: 10.1126/science.8316831. [DOI] [PubMed] [Google Scholar]
  5. Epler J. L. Ethyl methanesulfonate-induced lethals in Drosophila--frequency-dose relations and multiple mosaicism. Genetics. 1966 Jul;54(1):31–36. doi: 10.1093/genetics/54.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gibbs S. M., Becker A., Hardy R. W., Truman J. W. Soluble guanylate cyclase is required during development for visual system function in Drosophila. J Neurosci. 2001 Oct 1;21(19):7705–7714. doi: 10.1523/JNEUROSCI.21-19-07705.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Giunta Kelly L., Jang Janet K., Manheim Elizabeth A., Subramanian Gayathri, McKim Kim S. subito encodes a kinesin-like protein required for meiotic spindle pole formation in Drosophila melanogaster. Genetics. 2002 Apr;160(4):1489–1501. doi: 10.1093/genetics/160.4.1489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Laurencon Anne, Orme Charisse M., Peters Heather K., Boulton Christina L., Vladar Eszter K., Langley Sasha A., Bakis Emmanuel P., Harris David T., Harris Nathan J., Wayson Sarah M. A large-scale screen for mutagen-sensitive loci in Drosophila. Genetics. 2004 May;167(1):217–231. doi: 10.1534/genetics.167.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Manheim Elizabeth A., McKim Kim S. The Synaptonemal complex component C(2)M regulates meiotic crossing over in Drosophila. Curr Biol. 2003 Feb 18;13(4):276–285. doi: 10.1016/s0960-9822(03)00050-2. [DOI] [PubMed] [Google Scholar]
  10. McCallum C. M., Comai L., Greene E. A., Henikoff S. Targeted screening for induced mutations. Nat Biotechnol. 2000 Apr;18(4):455–457. doi: 10.1038/74542. [DOI] [PubMed] [Google Scholar]
  11. Miklos G. L., Rubin G. M. The role of the genome project in determining gene function: insights from model organisms. Cell. 1996 Aug 23;86(4):521–529. doi: 10.1016/s0092-8674(00)80126-9. [DOI] [PubMed] [Google Scholar]
  12. Niemeyer B. A., Suzuki E., Scott K., Jalink K., Zuker C. S. The Drosophila light-activated conductance is composed of the two channels TRP and TRPL. Cell. 1996 May 31;85(5):651–659. doi: 10.1016/s0092-8674(00)81232-5. [DOI] [PubMed] [Google Scholar]
  13. Tsunoda S., Sierralta J., Sun Y., Bodner R., Suzuki E., Becker A., Socolich M., Zuker C. S. A multivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade. Nature. 1997 Jul 17;388(6639):243–249. doi: 10.1038/40805. [DOI] [PubMed] [Google Scholar]
  14. Wakimoto Barbara T., Lindsley Dan L., Herrera Cheryl. Toward a comprehensive genetic analysis of male fertility in Drosophila melanogaster. Genetics. 2004 May;167(1):207–216. doi: 10.1534/genetics.167.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Zelhof Andrew C., Koundakjian Edmund, Scully Audra L., Hardy Robert W., Pounds Linda. Mutation of the photoreceptor specific homeodomain gene Pph13 results in defects in phototransduction and rhabdomere morphogenesis. Development. 2003 Sep;130(18):4383–4392. doi: 10.1242/dev.00651. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES