Skip to main content
Genetics logoLink to Genetics
. 2004 May;167(1):1–7. doi: 10.1534/genetics.167.1.1

Sickle-cell anemia hemoglobin: the molecular biology of the first "molecular disease"--the crucial importance of serendipity.

Vernon M Ingram 1
PMCID: PMC1470873  PMID: 15166132

Full Text

The Full Text of this article is available as a PDF (140.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison Anthony C. Two lessons from the interface of genetics and medicine. Genetics. 2004 Apr;166(4):1591–1599. doi: 10.1534/genetics.166.4.1591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BAGLIONI C., INGRAM V. M. Abnormal human haemoglobins. V. Chemical investigation of haemoglobins A, G, C, X from one individual. Biochim Biophys Acta. 1961 Apr 1;48:253–265. doi: 10.1016/0006-3002(61)90475-9. [DOI] [PubMed] [Google Scholar]
  3. BAGLIONI C. The fusion of two peptide chains in hemoglobin Lepore and its interpretation as a genetic deletion. Proc Natl Acad Sci U S A. 1962 Nov 15;48:1880–1886. doi: 10.1073/pnas.48.11.1880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bunn H. F. Pathogenesis and treatment of sickle cell disease. N Engl J Med. 1997 Sep 11;337(11):762–769. doi: 10.1056/NEJM199709113371107. [DOI] [PubMed] [Google Scholar]
  5. DeSimone J., Heller P., Hall L., Zwiers D. 5-Azacytidine stimulates fetal hemoglobin synthesis in anemic baboons. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4428–4431. doi: 10.1073/pnas.79.14.4428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. INGRAM V. M. A micro end-group method for peptides. Nature. 1950 Dec 16;166(4233):1038–1038. doi: 10.1038/1661038a0. [DOI] [PubMed] [Google Scholar]
  7. INGRAM V. M., STRETTON A. O. Genetic basis of the thalassaemia diseases. Nature. 1959 Dec 19;184:1903–1909. doi: 10.1038/1841903a0. [DOI] [PubMed] [Google Scholar]
  8. INGRAM V. M., STRETTON A. O. Human haemoglobin A2. II. The chemistry of some peptides peculiar to haemoglobin A2. Biochim Biophys Acta. 1962 Sep 10;63:20–33. doi: 10.1016/0006-3002(62)90334-7. [DOI] [PubMed] [Google Scholar]
  9. INGRAM V. M., STRETTON A. O. Human haemoglobin A2: chemistry, genetics and evolution. Nature. 1961 Jun 17;190:1079–1084. doi: 10.1038/1901079a0. [DOI] [PubMed] [Google Scholar]
  10. Lewis E. B. C. B. Bridges' repeat hypothesis and the nature of the gene. Genetics. 2003 Jun;164(2):427–431. doi: 10.1093/genetics/164.2.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. PAULING L., ITANO H. A. Sickle cell anemia a molecular disease. Science. 1949 Nov 25;110(2865):543–548. doi: 10.1126/science.110.2865.543. [DOI] [PubMed] [Google Scholar]
  12. PERUTZ R. R., LIQUORI A. M., EIRICH F. X-ray and solubility studies of the haemoglobin of sickle-cell anaemia patients. Nature. 1951 Jun 9;167(4258):929–931. doi: 10.1038/167929a0. [DOI] [PubMed] [Google Scholar]
  13. Perutz M. F., Lehmann H. Molecular pathology of human haemoglobin. Nature. 1968 Aug 31;219(5157):902–909. doi: 10.1038/219902a0. [DOI] [PubMed] [Google Scholar]
  14. SANGER F., TUPPY H. The amino-acid sequence in the phenylalanyl chain of insulin. 2. The investigation of peptides from enzymic hydrolysates. Biochem J. 1951 Sep;49(4):481–490. doi: 10.1042/bj0490481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Stretton Antony O. W. The first sequence. Fred Sanger and insulin. Genetics. 2002 Oct;162(2):527–532. doi: 10.1093/genetics/162.2.527. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES