Abstract
In a screen for new DNA repair mutants, we tested 6275 Drosophila strains bearing homozygous mutagenized autosomes (obtained from C. Zuker) for hypersensitivity to methyl methanesulfonate (MMS) and nitrogen mustard (HN2). Testing of 2585 second-chromosome lines resulted in the recovery of 18 mutants, 8 of which were alleles of known genes. The remaining 10 second-chromosome mutants were solely sensitive to MMS and define 8 new mutagen-sensitive genes (mus212-mus219). Testing of 3690 third chromosomes led to the identification of 60 third-chromosome mutants, 44 of which were alleles of known genes. The remaining 16 mutants define 14 new mutagen-sensitive genes (mus314-mus327). We have initiated efforts to identify these genes at the molecular level and report here the first two identified. The HN2-sensitive mus322 mutant defines the Drosophila ortholog of the yeast snm1 gene, and the MMS- and HN2-sensitive mus301 mutant defines the Drosophila ortholog of the human HEL308 gene. We have also identified a second-chromosome mutant, mus215(ZIII-2059), that uniformly reduces the frequency of meiotic recombination to <3% of that observed in wild type and thus defines a function required for both DNA repair and meiotic recombination. At least one allele of each new gene identified in this study is available at the Bloomington Stock Center.
Full Text
The Full Text of this article is available as a PDF (201.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abdu Uri, González-Reyes Acaimo, Ghabrial Amin, Schüpbach Trudi. The Drosophila spn-D gene encodes a RAD51C-like protein that is required exclusively during meiosis. Genetics. 2003 Sep;165(1):197–204. doi: 10.1093/genetics/165.1.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adams M. D., Celniker S. E., Holt R. A., Evans C. A., Gocayne J. D., Amanatides P. G., Scherer S. E., Li P. W., Hoskins R. A., Galle R. F. The genome sequence of Drosophila melanogaster. Science. 2000 Mar 24;287(5461):2185–2195. doi: 10.1126/science.287.5461.2185. [DOI] [PubMed] [Google Scholar]
- Adams Melissa D., McVey Mitch, Sekelsky Jeff J. Drosophila BLM in double-strand break repair by synthesis-dependent strand annealing. Science. 2003 Jan 10;299(5604):265–267. doi: 10.1126/science.1077198. [DOI] [PubMed] [Google Scholar]
- Aravind L. An evolutionary classification of the metallo-beta-lactamase fold proteins. In Silico Biol. 1999;1(2):69–91. [PubMed] [Google Scholar]
- Baker B. S., Boyd J. B., Carpenter A. T., Green M. M., Nguyen T. D., Ripoll P., Smith P. D. Genetic controls of meiotic recombination and somatic DNA metabolism in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4140–4144. doi: 10.1073/pnas.73.11.4140. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker B. S., Carpenter A. T. Genetic analysis of sex chromosomal meiotic mutants in Drosophilia melanogaster. Genetics. 1972 Jun;71(2):255–286. doi: 10.1093/genetics/71.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bauer G. B., Povirk L. F. Specificity and kinetics of interstrand and intrastrand bifunctional alkylation by nitrogen mustards at a G-G-C sequence. Nucleic Acids Res. 1997 Mar 15;25(6):1211–1218. doi: 10.1093/nar/25.6.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyd J. B., Golino M. D., Nguyen T. D., Green M. M. Isolation and characterization of X-linked mutants of Drosophila melanogaster which are sensitive to mutagens. Genetics. 1976 Nov;84(3):485–506. doi: 10.1093/genetics/84.3.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyd J. B., Golino M. D., Shaw K. E., Osgood C. J., Green M. M. Third-chromosome mutagen-sensitive mutants of Drosophila melanogaster. Genetics. 1981 Mar-Apr;97(3-4):607–623. doi: 10.1093/genetics/97.3-4.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyd J. B., Sakaguchi K., Harris P. V. mus308 mutants of Drosophila exhibit hypersensitivity to DNA cross-linking agents and are defective in a deoxyribonuclease. Genetics. 1990 Aug;125(4):813–819. doi: 10.1093/genetics/125.4.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brendel Martin, Bonatto Diego, Strauss Martin, Revers Luis Fernando, Pungartnik Cristina, Saffi Jenifer, Henriques João Antonio Pegas. Role of PSO genes in repair of DNA damage of Saccharomyces cerevisiae. Mutat Res. 2003 Nov;544(2-3):179–193. doi: 10.1016/j.mrrev.2003.06.018. [DOI] [PubMed] [Google Scholar]
- Burtis K. C., Harris P. V. A possible functional role for a new class of eukaryotic DNA polymerases. Curr Biol. 1997 Dec 1;7(12):R743–R744. doi: 10.1016/s0960-9822(06)00391-5. [DOI] [PubMed] [Google Scholar]
- Callebaut Isabelle, Moshous Despina, Mornon Jean-Paul, de Villartay Jean-Pierre. Metallo-beta-lactamase fold within nucleic acids processing enzymes: the beta-CASP family. Nucleic Acids Res. 2002 Aug 15;30(16):3592–3601. doi: 10.1093/nar/gkf470. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Calléja F. M., Nivard M. J., Eeken J. C. Induced mutagenic effects in the nucleotide excision repair deficient Drosophila mutant mus201(D1), expressing a truncated XPG protein. Mutat Res. 2001 Jan 5;461(4):279–288. doi: 10.1016/s0921-8777(00)00055-0. [DOI] [PubMed] [Google Scholar]
- Cortez D., Guntuku S., Qin J., Elledge S. J. ATR and ATRIP: partners in checkpoint signaling. Science. 2001 Nov 23;294(5547):1713–1716. doi: 10.1126/science.1065521. [DOI] [PubMed] [Google Scholar]
- De Silva I. U., McHugh P. J., Clingen P. H., Hartley J. A. Defining the roles of nucleotide excision repair and recombination in the repair of DNA interstrand cross-links in mammalian cells. Mol Cell Biol. 2000 Nov;20(21):7980–7990. doi: 10.1128/mcb.20.21.7980-7990.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dronkert M. L., de Wit J., Boeve M., Vasconcelos M. L., van Steeg H., Tan T. L., Hoeijmakers J. H., Kanaar R. Disruption of mouse SNM1 causes increased sensitivity to the DNA interstrand cross-linking agent mitomycin C. Mol Cell Biol. 2000 Jul;20(13):4553–4561. doi: 10.1128/mcb.20.13.4553-4561.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eeken J. C., Romeijn R. J., de Jong A. W., Pastink A., Lohman P. H. Isolation and genetic characterisation of the Drosophila homologue of (SCE)REV3, encoding the catalytic subunit of DNA polymerase zeta. Mutat Res. 2001 Apr 4;485(3):237–253. doi: 10.1016/s0921-8777(01)00062-3. [DOI] [PubMed] [Google Scholar]
- FlyBase Consortium The FlyBase database of the Drosophila genome projects and community literature. Nucleic Acids Res. 2003 Jan 1;31(1):172–175. doi: 10.1093/nar/gkg094. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gatti M., Smith D. A., Baker B. S. A gene controlling condensation of heterochromatin in Drosophila melanogaster. Science. 1983 Jul 1;221(4605):83–85. doi: 10.1126/science.6407113. [DOI] [PubMed] [Google Scholar]
- Ghabrial A., Ray R. P., Schüpbach T. okra and spindle-B encode components of the RAD52 DNA repair pathway and affect meiosis and patterning in Drosophila oogenesis. Genes Dev. 1998 Sep 1;12(17):2711–2723. doi: 10.1101/gad.12.17.2711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghabrial A., Schüpbach T. Activation of a meiotic checkpoint regulates translation of Gurken during Drosophila oogenesis. Nat Cell Biol. 1999 Oct;1(6):354–357. doi: 10.1038/14046. [DOI] [PubMed] [Google Scholar]
- Gorbalenya A. E., Koonin E. V., Donchenko A. P., Blinov V. M. Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res. 1989 Jun 26;17(12):4713–4730. doi: 10.1093/nar/17.12.4713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grossmann K. F., Ward A. M., Matkovic M. E., Folias A. E., Moses R. E. S. cerevisiae has three pathways for DNA interstrand crosslink repair. Mutat Res. 2001 Dec 19;487(3-4):73–83. doi: 10.1016/s0921-8777(01)00106-9. [DOI] [PubMed] [Google Scholar]
- Hari K. L., Santerre A., Sekelsky J. J., McKim K. S., Boyd J. B., Hawley R. S. The mei-41 gene of D. melanogaster is a structural and functional homolog of the human ataxia telangiectasia gene. Cell. 1995 Sep 8;82(5):815–821. doi: 10.1016/0092-8674(95)90478-6. [DOI] [PubMed] [Google Scholar]
- Hawley R. S., Irick H., Zitron A. E., Haddox D. A., Lohe A., New C., Whitley M. D., Arbel T., Jang J., McKim K. There are two mechanisms of achiasmate segregation in Drosophila females, one of which requires heterochromatic homology. Dev Genet. 1992;13(6):440–467. doi: 10.1002/dvg.1020130608. [DOI] [PubMed] [Google Scholar]
- Henderson D. S., Bailey D. A., Sinclair D. A., Grigliatti T. A. Isolation and characterization of second chromosome mutagen-sensitive mutations in Drosophila melanogaster. Mutat Res. 1987 Mar;177(1):83–93. doi: 10.1016/0027-5107(87)90024-8. [DOI] [PubMed] [Google Scholar]
- Henderson D. S., Banga S. S., Grigliatti T. A., Boyd J. B. Mutagen sensitivity and suppression of position-effect variegation result from mutations in mus209, the Drosophila gene encoding PCNA. EMBO J. 1994 Mar 15;13(6):1450–1459. doi: 10.1002/j.1460-2075.1994.tb06399.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henning K. A., Peterson C., Legerski R., Friedberg E. C. Cloning the Drosophila homolog of the xeroderma pigmentosum complementation group C gene reveals homology between the predicted human and Drosophila polypeptides and that encoded by the yeast RAD4 gene. Nucleic Acids Res. 1994 Feb 11;22(3):257–261. doi: 10.1093/nar/22.3.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henriques J. A., Moustacchi E. Isolation and characterization of pso mutants sensitive to photo-addition of psoralen derivatives in Saccharomyces cerevisiae. Genetics. 1980 Jun;95(2):273–288. doi: 10.1093/genetics/95.2.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kooistra R., Vreeken K., Zonneveld J. B., de Jong A., Eeken J. C., Osgood C. J., Buerstedde J. M., Lohman P. H., Pastink A. The Drosophila melanogaster RAD54 homolog, DmRAD54, is involved in the repair of radiation damage and recombination. Mol Cell Biol. 1997 Oct;17(10):6097–6104. doi: 10.1128/mcb.17.10.6097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laport Ginna G., Levine Bruce L., Stadtmauer Edward A., Schuster Stephen J., Luger Selina M., Grupp Stephan, Bunin Nancy, Strobl Frank J., Cotte Julio, Zheng Zhaohui. Adoptive transfer of costimulated T cells induces lymphocytosis in patients with relapsed/refractory non-Hodgkin lymphoma following CD34+-selected hematopoietic cell transplantation. Blood. 2003 May 22;102(6):2004–2013. doi: 10.1182/blood-2003-01-0095. [DOI] [PubMed] [Google Scholar]
- Laurençon Anne, Purdy Amanda, Sekelsky Jeff, Hawley R. Scott, Su Tin Tin. Phenotypic analysis of separation-of-function alleles of MEI-41, Drosophila ATM/ATR. Genetics. 2003 Jun;164(2):589–601. doi: 10.1093/genetics/164.2.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee Sung-Keun, Yu Sung-Lim, Prakash Louise, Prakash Satya. Yeast RAD26, a homolog of the human CSB gene, functions independently of nucleotide excision repair and base excision repair in promoting transcription through damaged bases. Mol Cell Biol. 2002 Jun;22(12):4383–4389. doi: 10.1128/MCB.22.12.4383-4389.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lehmann A. R., Carr A. M. The ataxia-telangiectasia gene: a link between checkpoint controls, neurodegeneration and cancer. Trends Genet. 1995 Oct;11(10):375–377. doi: 10.1016/s0168-9525(00)89112-x. [DOI] [PubMed] [Google Scholar]
- Leonhardt E. A., Boyd J. B. Identification of a new locus, mus115, in Drosophila melanogaster. Mutat Res. 1993 Feb;301(2):121–124. doi: 10.1016/0165-7992(93)90034-s. [DOI] [PubMed] [Google Scholar]
- Li Xiaorong, Moses Robb E. The beta-lactamase motif in Snm1 is required for repair of DNA double-strand breaks caused by interstrand crosslinks in S. cerevisiae. DNA Repair (Amst) 2003 Jan 2;2(1):121–129. doi: 10.1016/s1568-7864(02)00192-1. [DOI] [PubMed] [Google Scholar]
- Ma Yunmei, Pannicke Ulrich, Schwarz Klaus, Lieber Michael R. Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell. 2002 Mar 22;108(6):781–794. doi: 10.1016/s0092-8674(02)00671-2. [DOI] [PubMed] [Google Scholar]
- Magaña-Schwencke N., Henriques J. A., Chanet R., Moustacchi E. The fate of 8-methoxypsoralen photoinduced crosslinks in nuclear and mitochondrial yeast DNA: comparison of wild-type and repair-deficient strains. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1722–1726. doi: 10.1073/pnas.79.6.1722. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marini Federica, Wood Richard D. A human DNA helicase homologous to the DNA cross-link sensitivity protein Mus308. J Biol Chem. 2001 Dec 18;277(10):8716–8723. doi: 10.1074/jbc.M110271200. [DOI] [PubMed] [Google Scholar]
- Mason J. M., Green M. M., Shaw K. E., Boyd J. B. Genetic analysis of X-linked mutagen-sensitive mutants of Drosophila melanogaster. Mutat Res. 1981 May;81(3):329–343. doi: 10.1016/0027-5107(81)90120-2. [DOI] [PubMed] [Google Scholar]
- Moshous D., Callebaut I., de Chasseval R., Corneo B., Cavazzana-Calvo M., Le Deist F., Tezcan I., Sanal O., Bertrand Y., Philippe N. Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell. 2001 Apr 20;105(2):177–186. doi: 10.1016/s0092-8674(01)00309-9. [DOI] [PubMed] [Google Scholar]
- Mounkes L. C., Fuller M. T. Molecular characterization of mutant alleles of the DNA repair/basal transcription factor haywire/ERCC3 in Drosophila. Genetics. 1999 May;152(1):291–297. doi: 10.1093/genetics/152.1.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mounkes L. C., Jones R. S., Liang B. C., Gelbart W., Fuller M. T. A Drosophila model for xeroderma pigmentosum and Cockayne's syndrome: haywire encodes the fly homolog of ERCC3, a human excision repair gene. Cell. 1992 Dec 11;71(6):925–937. doi: 10.1016/0092-8674(92)90389-t. [DOI] [PubMed] [Google Scholar]
- Mäkiniemi M., Hillukkala T., Tuusa J., Reini K., Vaara M., Huang D., Pospiech H., Majuri I., Westerling T., Mäkelä T. P. BRCT domain-containing protein TopBP1 functions in DNA replication and damage response. J Biol Chem. 2001 Jun 6;276(32):30399–30406. doi: 10.1074/jbc.M102245200. [DOI] [PubMed] [Google Scholar]
- Nguyen T. D., Green M. M., Boyd J. B. Isolation of two X-linked mutants in Drosophila melanogaster which are sensitive to gamma-rays. Mutat Res. 1978 Jan;49(1):139–143. doi: 10.1016/0027-5107(78)90086-6. [DOI] [PubMed] [Google Scholar]
- Niemeyer B. A., Suzuki E., Scott K., Jalink K., Zuker C. S. The Drosophila light-activated conductance is composed of the two channels TRP and TRPL. Cell. 1996 May 31;85(5):651–659. doi: 10.1016/s0092-8674(00)81232-5. [DOI] [PubMed] [Google Scholar]
- Ruhland A., Kircher M., Wilborn F., Brendel M. A yeast mutant specifically sensitive to bifunctional alkylation. Mutat Res. 1981 Nov;91(6):457–462. doi: 10.1016/0165-7992(81)90052-x. [DOI] [PubMed] [Google Scholar]
- Sekelsky J. J., Hollis K. J., Eimerl A. I., Burtis K. C., Hawley R. S. Nucleotide excision repair endonuclease genes in Drosophila melanogaster. Mutat Res. 2000 Apr 28;459(3):219–228. doi: 10.1016/s0921-8777(99)00075-0. [DOI] [PubMed] [Google Scholar]
- Sekelsky J. J., McKim K. S., Chin G. M., Hawley R. S. The Drosophila meiotic recombination gene mei-9 encodes a homologue of the yeast excision repair protein Rad1. Genetics. 1995 Oct;141(2):619–627. doi: 10.1093/genetics/141.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith P. D., Snyder R. D., Dusenbery R. L. Isolation and characterization of repair-deficient mutants of Drosophila melanogaster. Basic Life Sci. 1980;15:175–188. doi: 10.1007/978-1-4684-3842-0_12. [DOI] [PubMed] [Google Scholar]
- Staeva-Vieira Eric, Yoo Siuk, Lehmann Ruth. An essential role of DmRad51/SpnA in DNA repair and meiotic checkpoint control. EMBO J. 2003 Nov 3;22(21):5863–5874. doi: 10.1093/emboj/cdg564. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Symington Lorraine S. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev. 2002 Dec;66(4):630-70, table of contents. doi: 10.1128/MMBR.66.4.630-670.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsunoda S., Sierralta J., Sun Y., Bodner R., Suzuki E., Becker A., Socolich M., Zuker C. S. A multivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade. Nature. 1997 Jul 17;388(6639):243–249. doi: 10.1038/40805. [DOI] [PubMed] [Google Scholar]
- Van Hatten Ruth A., Tutter Antonin V., Holway Antonia H., Khederian Alyssa M., Walter Johannes C., Michael W. Matthew. The Xenopus Xmus101 protein is required for the recruitment of Cdc45 to origins of DNA replication. J Cell Biol. 2002 Nov 18;159(4):541–547. doi: 10.1083/jcb.200207090. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Z., Fast W., Valentine A. M., Benkovic S. J. Metallo-beta-lactamase: structure and mechanism. Curr Opin Chem Biol. 1999 Oct;3(5):614–622. doi: 10.1016/s1367-5931(99)00017-4. [DOI] [PubMed] [Google Scholar]
- Weinert T., Lydall D. Cell cycle checkpoints, genetic instability and cancer. Semin Cancer Biol. 1993 Apr;4(2):129–140. [PubMed] [Google Scholar]
- Wood R. D., Mitchell M., Sgouros J., Lindahl T. Human DNA repair genes. Science. 2001 Feb 16;291(5507):1284–1289. doi: 10.1126/science.1056154. [DOI] [PubMed] [Google Scholar]
- Yamamoto A. H., Brodberg R. K., Banga S. S., Boyd J. B., Mason J. M. Recovery and characterization of hybrid dysgenesis-induced mei-9 and mei-41 alleles of Drosophila melanogaster. Mutat Res. 1990 Mar;229(1):17–28. doi: 10.1016/0027-5107(90)90004-n. [DOI] [PubMed] [Google Scholar]
- Yamamoto R. R., Axton J. M., Yamamoto Y., Saunders R. D., Glover D. M., Henderson D. S. The Drosophila mus101 gene, which links DNA repair, replication and condensation of heterochromatin in mitosis, encodes a protein with seven BRCA1 C-terminus domains. Genetics. 2000 Oct;156(2):711–721. doi: 10.1093/genetics/156.2.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yildiz Ozlem, Majumder Samarpan, Kramer Benjamin, Sekelsky Jeff J. Drosophila MUS312 interacts with the nucleotide excision repair endonuclease MEI-9 to generate meiotic crossovers. Mol Cell. 2002 Dec;10(6):1503–1509. doi: 10.1016/s1097-2765(02)00782-7. [DOI] [PMC free article] [PubMed] [Google Scholar]