Skip to main content
Genetics logoLink to Genetics
. 2004 May;167(1):21–33. doi: 10.1534/genetics.167.1.21

An essential role for the Saccharomyces cerevisiae DEAD-box helicase DHH1 in G1/S DNA-damage checkpoint recovery.

Megan Bergkessel 1, Joseph C Reese 1
PMCID: PMC1470881  PMID: 15166134

Abstract

The eukaryotic cell cycle displays a degree of plasticity in its regulation; cell cycle progression can be transiently arrested in response to environmental stresses. While the signaling pathways leading to cell cycle arrest are beginning to be well understood, the regulation of the release from arrest has not been well characterized. Here we show that DHH1, encoding a DEAD-box RNA helicase orthologous to the human putative proto-oncogene p54/RCK, is important in release from DNA-damage-induced cell cycle arrest at the G1/S checkpoint. DHH1 mutants are not defective for DNA repair and recover normally from the G2/M and replication checkpoints, suggesting a specific function for Dhh1p in recovery from G1/S checkpoint arrest. Dhh1p has been suggested to play a role in partitioning mRNAs between translatable and nontranslatable pools, and our results implicate this modulation of mRNA metabolism in the recovery from G1/S cell cycle arrest following DNA damage. Furthermore, the high degree of conservation between DHH1 and its human ortholog suggests that this mechanism is conserved among all eukaryotes and potentially important in human disease.

Full Text

The Full Text of this article is available as a PDF (473.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akao Y., Marukawa O., Morikawa H., Nakao K., Kamei M., Hachiya T., Tsujimoto Y. The rck/p54 candidate proto-oncogene product is a 54-kilodalton D-E-A-D box protein differentially expressed in human and mouse tissues. Cancer Res. 1995 Aug 1;55(15):3444–3449. [PubMed] [Google Scholar]
  2. Bai Y., Salvadore C., Chiang Y. C., Collart M. A., Liu H. Y., Denis C. L. The CCR4 and CAF1 proteins of the CCR4-NOT complex are physically and functionally separated from NOT2, NOT4, and NOT5. Mol Cell Biol. 1999 Oct;19(10):6642–6651. doi: 10.1128/mcb.19.10.6642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Birrell G. W., Giaever G., Chu A. M., Davis R. W., Brown J. M. A genome-wide screen in Saccharomyces cerevisiae for genes affecting UV radiation sensitivity. Proc Natl Acad Sci U S A. 2001 Oct 16;98(22):12608–12613. doi: 10.1073/pnas.231366398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen C. Y., Shyu A. B. AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci. 1995 Nov;20(11):465–470. doi: 10.1016/s0968-0004(00)89102-1. [DOI] [PubMed] [Google Scholar]
  5. Collart M. A., Struhl K. NOT1(CDC39), NOT2(CDC36), NOT3, and NOT4 encode a global-negative regulator of transcription that differentially affects TATA-element utilization. Genes Dev. 1994 Mar 1;8(5):525–537. doi: 10.1101/gad.8.5.525. [DOI] [PubMed] [Google Scholar]
  6. Coller J. M., Tucker M., Sheth U., Valencia-Sanchez M. A., Parker R. The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. RNA. 2001 Dec;7(12):1717–1727. doi: 10.1017/s135583820101994x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Danaie P., Altmann M., Hall M. N., Trachsel H., Helliwell S. B. CLN3 expression is sufficient to restore G1-to-S-phase progression in Saccharomyces cerevisiae mutants defective in translation initiation factor eIF4E. Biochem J. 1999 May 15;340(Pt 1):135–141. [PMC free article] [PubMed] [Google Scholar]
  8. Deluen Cécile, James Nicole, Maillet Laurent, Molinete Miguel, Theiler Grégory, Lemaire Marc, Paquet Nicole, Collart Martine A. The Ccr4-not complex and yTAF1 (yTaf(II)130p/yTaf(II)145p) show physical and functional interactions. Mol Cell Biol. 2002 Oct;22(19):6735–6749. doi: 10.1128/MCB.22.19.6735-6749.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fischer Nicole, Weis Karsten. The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1. EMBO J. 2002 Jun 3;21(11):2788–2797. doi: 10.1093/emboj/21.11.2788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gillette T. G., Huang W., Russell S. J., Reed S. H., Johnston S. A., Friedberg E. C. The 19S complex of the proteasome regulates nucleotide excision repair in yeast. Genes Dev. 2001 Jun 15;15(12):1528–1539. doi: 10.1101/gad.869601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hartwell L. H., Kastan M. B. Cell cycle control and cancer. Science. 1994 Dec 16;266(5192):1821–1828. doi: 10.1126/science.7997877. [DOI] [PubMed] [Google Scholar]
  12. Hartwell L., Weinert T., Kadyk L., Garvik B. Cell cycle checkpoints, genomic integrity, and cancer. Cold Spring Harb Symp Quant Biol. 1994;59:259–263. doi: 10.1101/sqb.1994.059.01.030. [DOI] [PubMed] [Google Scholar]
  13. Hata H., Mitsui H., Liu H., Bai Y., Denis C. L., Shimizu Y., Sakai A. Dhh1p, a putative RNA helicase, associates with the general transcription factors Pop2p and Ccr4p from Saccharomyces cerevisiae. Genetics. 1998 Feb;148(2):571–579. doi: 10.1093/genetics/148.2.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ladomery M., Wade E., Sommerville J. Xp54, the Xenopus homologue of human RNA helicase p54, is an integral component of stored mRNP particles in oocytes. Nucleic Acids Res. 1997 Mar 1;25(5):965–973. doi: 10.1093/nar/25.5.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Landers J. E., Cassel S. L., George D. L. Translational enhancement of mdm2 oncogene expression in human tumor cells containing a stabilized wild-type p53 protein. Cancer Res. 1997 Aug 15;57(16):3562–3568. [PubMed] [Google Scholar]
  16. Levine K., Tinkelenberg A. H., Cross F. The CLN gene family: central regulators of cell cycle Start in budding yeast. Prog Cell Cycle Res. 1995;1:101–114. doi: 10.1007/978-1-4615-1809-9_8. [DOI] [PubMed] [Google Scholar]
  17. Lu D., Yunis J. J. Cloning, expression and localization of an RNA helicase gene from a human lymphoid cell line with chromosomal breakpoint 11q23.3. Nucleic Acids Res. 1992 Apr 25;20(8):1967–1972. doi: 10.1093/nar/20.8.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lydall D., Weinert T. From DNA damage to cell cycle arrest and suicide: a budding yeast perspective. Curr Opin Genet Dev. 1996 Feb;6(1):4–11. doi: 10.1016/s0959-437x(96)90003-9. [DOI] [PubMed] [Google Scholar]
  19. Lydall D., Weinert T. Yeast checkpoint genes in DNA damage processing: implications for repair and arrest. Science. 1995 Dec 1;270(5241):1488–1491. doi: 10.1126/science.270.5241.1488. [DOI] [PubMed] [Google Scholar]
  20. Maillet Laurent, Collart Martine A. Interaction between Not1p, a component of the Ccr4-not complex, a global regulator of transcription, and Dhh1p, a putative RNA helicase. J Biol Chem. 2001 Nov 5;277(4):2835–2842. doi: 10.1074/jbc.M107979200. [DOI] [PubMed] [Google Scholar]
  21. Mazzoni Cristina, Mancini Patrizia, Verdone Loredana, Madeo Frank, Serafini Agnese, Herker Eva, Falcone Claudio. A truncated form of KlLsm4p and the absence of factors involved in mRNA decapping trigger apoptosis in yeast. Mol Biol Cell. 2003 Feb;14(2):721–729. doi: 10.1091/mbc.E02-05-0258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Minshall N., Thom G., Standart N. A conserved role of a DEAD box helicase in mRNA masking. RNA. 2001 Dec;7(12):1728–1742. doi: 10.1017/s135583820101158x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Moriya H., Isono K. Analysis of genetic interactions between DHH1, SSD1 and ELM1 indicates their involvement in cellular morphology determination in Saccharomyces cerevisiae. Yeast. 1999 Apr;15(6):481–496. doi: 10.1002/(SICI)1097-0061(199904)15:6<481::AID-YEA391>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
  24. Morrow D. M., Tagle D. A., Shiloh Y., Collins F. S., Hieter P. TEL1, an S. cerevisiae homolog of the human gene mutated in ataxia telangiectasia, is functionally related to the yeast checkpoint gene MEC1. Cell. 1995 Sep 8;82(5):831–840. doi: 10.1016/0092-8674(95)90480-8. [DOI] [PubMed] [Google Scholar]
  25. Nakagawa Y., Morikawa H., Hirata I., Shiozaki M., Matsumoto A., Maemura K., Nishikawa T., Niki M., Tanigawa N., Ikegami M. Overexpression of rck/p54, a DEAD box protein, in human colorectal tumours. Br J Cancer. 1999 May;80(5-6):914–917. doi: 10.1038/sj.bjc.6690441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nakamura A., Amikura R., Hanyu K., Kobayashi S. Me31B silences translation of oocyte-localizing RNAs through the formation of cytoplasmic RNP complex during Drosophila oogenesis. Development. 2001 Sep;128(17):3233–3242. doi: 10.1242/dev.128.17.3233. [DOI] [PubMed] [Google Scholar]
  27. Peter M. The regulation of cyclin-dependent kinase inhibitors (CKIs). Prog Cell Cycle Res. 1997;3:99–108. doi: 10.1007/978-1-4615-5371-7_8. [DOI] [PubMed] [Google Scholar]
  28. Philpott C. C., Rashford J., Yamaguchi-Iwai Y., Rouault T. A., Dancis A., Klausner R. D. Cell-cycle arrest and inhibition of G1 cyclin translation by iron in AFT1-1(up) yeast. EMBO J. 1998 Sep 1;17(17):5026–5036. doi: 10.1093/emboj/17.17.5026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Reed S. I. Control of the G1/S transition. Cancer Surv. 1997;29:7–23. [PubMed] [Google Scholar]
  30. Reese J. C., Green M. R. Genetic analysis of TAF68/61 reveals links to cell cycle regulators. Yeast. 2001 Sep 30;18(13):1197–1205. doi: 10.1002/yea.761. [DOI] [PubMed] [Google Scholar]
  31. Sanchez Y., Desany B. A., Jones W. J., Liu Q., Wang B., Elledge S. J. Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science. 1996 Jan 19;271(5247):357–360. doi: 10.1126/science.271.5247.357. [DOI] [PubMed] [Google Scholar]
  32. Schena M., Picard D., Yamamoto K. R. Vectors for constitutive and inducible gene expression in yeast. Methods Enzymol. 1991;194:389–398. doi: 10.1016/0076-6879(91)94029-c. [DOI] [PubMed] [Google Scholar]
  33. Shaulian E., Schreiber M., Piu F., Beeche M., Wagner E. F., Karin M. The mammalian UV response: c-Jun induction is required for exit from p53-imposed growth arrest. Cell. 2000 Dec 8;103(6):897–907. doi: 10.1016/s0092-8674(00)00193-8. [DOI] [PubMed] [Google Scholar]
  34. Sheth Ujwal, Parker Roy. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science. 2003 May 2;300(5620):805–808. doi: 10.1126/science.1082320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sidorova J. M., Breeden L. L. Rad53-dependent phosphorylation of Swi6 and down-regulation of CLN1 and CLN2 transcription occur in response to DNA damage in Saccharomyces cerevisiae. Genes Dev. 1997 Nov 15;11(22):3032–3045. doi: 10.1101/gad.11.22.3032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Siede W., Allen J. B., Elledge S. J., Friedberg E. C. The Saccharomyces cerevisiae MEC1 gene, which encodes a homolog of the human ATM gene product, is required for G1 arrest following radiation treatment. J Bacteriol. 1996 Oct;178(19):5841–5843. doi: 10.1128/jb.178.19.5841-5843.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Strahl-Bolsinger S., Tanner W. A yeast gene encoding a putative RNA helicase of the "DEAD"-box family. Yeast. 1993 Apr;9(4):429–432. doi: 10.1002/yea.320090414. [DOI] [PubMed] [Google Scholar]
  38. Sun Z., Fay D. S., Marini F., Foiani M., Stern D. F. Spk1/Rad53 is regulated by Mec1-dependent protein phosphorylation in DNA replication and damage checkpoint pathways. Genes Dev. 1996 Feb 15;10(4):395–406. doi: 10.1101/gad.10.4.395. [DOI] [PubMed] [Google Scholar]
  39. Tanner N. K., Linder P. DExD/H box RNA helicases: from generic motors to specific dissociation functions. Mol Cell. 2001 Aug;8(2):251–262. doi: 10.1016/s1097-2765(01)00329-x. [DOI] [PubMed] [Google Scholar]
  40. Tseng-Rogenski Stephanie S-I, Chong Jean-Leon, Thomas Christopher B., Enomoto Shinichiro, Berman Judith, Chang Tien-Hsien. Functional conservation of Dhh1p, a cytoplasmic DExD/H-box protein present in large complexes. Nucleic Acids Res. 2003 Sep 1;31(17):4995–5002. doi: 10.1093/nar/gkg712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tucker M., Valencia-Sanchez M. A., Staples R. R., Chen J., Denis C. L., Parker R. The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell. 2001 Feb 9;104(3):377–386. doi: 10.1016/s0092-8674(01)00225-2. [DOI] [PubMed] [Google Scholar]
  42. Tucker Morgan, Staples Robin R., Valencia-Sanchez Marco A., Muhlrad Denise, Parker Roy. Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae. EMBO J. 2002 Mar 15;21(6):1427–1436. doi: 10.1093/emboj/21.6.1427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wang W., Furneaux H., Cheng H., Caldwell M. C., Hutter D., Liu Y., Holbrook N., Gorospe M. HuR regulates p21 mRNA stabilization by UV light. Mol Cell Biol. 2000 Feb;20(3):760–769. doi: 10.1128/mcb.20.3.760-769.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wang X., Watt P. M., Borts R. H., Louis E. J., Hickson I. D. The topoisomerase II-associated protein, Pat1p, is required for maintenance of rDNA locus stability in Saccharomyces cerevisiae. Mol Gen Genet. 1999 Jun;261(4-5):831–840. doi: 10.1007/s004380050027. [DOI] [PubMed] [Google Scholar]
  45. Weinert T. A., Kiser G. L., Hartwell L. H. Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev. 1994 Mar 15;8(6):652–665. doi: 10.1101/gad.8.6.652. [DOI] [PubMed] [Google Scholar]
  46. Weinert T. Yeast checkpoint controls and relevance to cancer. Cancer Surv. 1997;29:109–132. [PubMed] [Google Scholar]
  47. Zhao X., Chabes A., Domkin V., Thelander L., Rothstein R. The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage. EMBO J. 2001 Jul 2;20(13):3544–3553. doi: 10.1093/emboj/20.13.3544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Zhou B. B., Elledge S. J. The DNA damage response: putting checkpoints in perspective. Nature. 2000 Nov 23;408(6811):433–439. doi: 10.1038/35044005. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES