Abstract
Vein (Vn), a ligand for the Drosophila epidermal growth factor receptor (Egfr), has a complex structure including a PEST, Ig, and EGF domain. We analyzed the structure-function relationships of Vn by assaying deletion mutants. The results show that each conserved domain influences Vn activity. A PEST deletion increases Vn potency and genetic evidence suggests that Vn is regulated by proteasomal degradation. The Ig deletion causes toxic effects not seen following expression of native Vn, but the Ig domain is not required for Vn localization or for the activation of Egfr signaling in wing vein patterning. Remarkably, when the EGF domain is deleted, Vn functions as a dominant negative ligand, implying that Vn normally physically interacts with another factor to promote its activity. We identified additional highly conserved sequences and found several regions that affect Vn potency and one that may mediate the effect of dominant negative Vn molecules. Together the results show that the activity of Vn is controlled both positively and negatively, demonstrating the existence of additional levels at which Egfr signaling can be regulated.
Full Text
The Full Text of this article is available as a PDF (483.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bang A. G., Kintner C. Rhomboid and Star facilitate presentation and processing of the Drosophila TGF-alpha homolog Spitz. Genes Dev. 2000 Jan 15;14(2):177–186. [PMC free article] [PubMed] [Google Scholar]
- Brand A. H., Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 1993 Jun;118(2):401–415. doi: 10.1242/dev.118.2.401. [DOI] [PubMed] [Google Scholar]
- Buonanno A., Fischbach G. D. Neuregulin and ErbB receptor signaling pathways in the nervous system. Curr Opin Neurobiol. 2001 Jun;11(3):287–296. doi: 10.1016/s0959-4388(00)00210-5. [DOI] [PubMed] [Google Scholar]
- Casci T., Freeman M. Control of EGF receptor signalling: lessons from fruitflies. Cancer Metastasis Rev. 1999;18(2):181–201. doi: 10.1023/a:1006313122373. [DOI] [PubMed] [Google Scholar]
- Falls Douglas L. Neuregulins: functions, forms, and signaling strategies. Exp Cell Res. 2003 Mar 10;284(1):14–30. doi: 10.1016/s0014-4827(02)00102-7. [DOI] [PubMed] [Google Scholar]
- Ferguson Kathryn M., Berger Mitchell B., Mendrola Jeannine M., Cho Hyun Soo, Leahy Daniel J., Lemmon Mark A. EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization. Mol Cell. 2003 Feb;11(2):507–517. doi: 10.1016/s1097-2765(03)00047-9. [DOI] [PubMed] [Google Scholar]
- Freeman M., Klämbt C., Goodman C. S., Rubin G. M. The argos gene encodes a diffusible factor that regulates cell fate decisions in the Drosophila eye. Cell. 1992 Jun 12;69(6):963–975. doi: 10.1016/0092-8674(92)90615-j. [DOI] [PubMed] [Google Scholar]
- Garrett Thomas P. J., McKern Neil M., Lou Meizhen, Elleman Thomas C., Adams Timothy E., Lovrecz George O., Zhu Hong-Jian, Walker Francesca, Frenkel Morry J., Hoyne Peter A. Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor alpha. Cell. 2002 Sep 20;110(6):763–773. doi: 10.1016/s0092-8674(02)00940-6. [DOI] [PubMed] [Google Scholar]
- Golembo M., Raz E., Shilo B. Z. The Drosophila embryonic midline is the site of Spitz processing, and induces activation of the EGF receptor in the ventral ectoderm. Development. 1996 Nov;122(11):3363–3370. doi: 10.1242/dev.122.11.3363. [DOI] [PubMed] [Google Scholar]
- Golembo M., Schweitzer R., Freeman M., Shilo B. Z. Argos transcription is induced by the Drosophila EGF receptor pathway to form an inhibitory feedback loop. Development. 1996 Jan;122(1):223–230. doi: 10.1242/dev.122.1.223. [DOI] [PubMed] [Google Scholar]
- Golembo M., Yarnitzky T., Volk T., Shilo B. Z. Vein expression is induced by the EGF receptor pathway to provide a positive feedback loop in patterning the Drosophila embryonic ventral ectoderm. Genes Dev. 1999 Jan 15;13(2):158–162. doi: 10.1101/gad.13.2.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris Raymond C., Chung Eunkyung, Coffey Robert J. EGF receptor ligands. Exp Cell Res. 2003 Mar 10;284(1):2–13. doi: 10.1016/s0014-4827(02)00105-2. [DOI] [PubMed] [Google Scholar]
- Hartenstein V., Posakony J. W. Development of adult sensilla on the wing and notum of Drosophila melanogaster. Development. 1989 Oct;107(2):389–405. doi: 10.1242/dev.107.2.389. [DOI] [PubMed] [Google Scholar]
- Hill R. J., Sternberg P. W. The gene lin-3 encodes an inductive signal for vulval development in C. elegans. Nature. 1992 Aug 6;358(6386):470–476. doi: 10.1038/358470a0. [DOI] [PubMed] [Google Scholar]
- Holbro Thomas, Civenni Gianluca, Hynes Nancy E. The ErbB receptors and their role in cancer progression. Exp Cell Res. 2003 Mar 10;284(1):99–110. doi: 10.1016/s0014-4827(02)00099-x. [DOI] [PubMed] [Google Scholar]
- Holt Robert A., Subramanian G. Mani, Halpern Aaron, Sutton Granger G., Charlab Rosane, Nusskern Deborah R., Wincker Patrick, Clark Andrew G., Ribeiro José M. C., Wides Ron. The genome sequence of the malaria mosquito Anopheles gambiae. Science. 2002 Oct 4;298(5591):129–149. doi: 10.1126/science.1076181. [DOI] [PubMed] [Google Scholar]
- Howes R., Wasserman J. D., Freeman M. In vivo analysis of Argos structure-function. Sequence requirements for inhibition of the Drosophila epidermal growth factor receptor. J Biol Chem. 1998 Feb 13;273(7):4275–4281. doi: 10.1074/jbc.273.7.4275. [DOI] [PubMed] [Google Scholar]
- Jin M. H., Sawamoto K., Ito M., Okano H. The interaction between the Drosophila secreted protein argos and the epidermal growth factor receptor inhibits dimerization of the receptor and binding of secreted spitz to the receptor. Mol Cell Biol. 2000 Mar;20(6):2098–2107. doi: 10.1128/mcb.20.6.2098-2107.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kramer R., Bucay N., Kane D. J., Martin L. E., Tarpley J. E., Theill L. E. Neuregulins with an Ig-like domain are essential for mouse myocardial and neuronal development. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4833–4838. doi: 10.1073/pnas.93.10.4833. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee J. R., Urban S., Garvey C. F., Freeman M. Regulated intracellular ligand transport and proteolysis control EGF signal activation in Drosophila. Cell. 2001 Oct 19;107(2):161–171. doi: 10.1016/s0092-8674(01)00526-8. [DOI] [PubMed] [Google Scholar]
- Li Q., Loeb J. A. Neuregulin-heparan-sulfate proteoglycan interactions produce sustained erbB receptor activation required for the induction of acetylcholine receptors in muscle. J Biol Chem. 2001 Aug 13;276(41):38068–38075. doi: 10.1074/jbc.M104485200. [DOI] [PubMed] [Google Scholar]
- Loeb J. A., Fischbach G. D. ARIA can be released from extracellular matrix through cleavage of a heparin-binding domain. J Cell Biol. 1995 Jul;130(1):127–135. doi: 10.1083/jcb.130.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loeb J. A., Khurana T. S., Robbins J. T., Yee A. G., Fischbach G. D. Expression patterns of transmembrane and released forms of neuregulin during spinal cord and neuromuscular synapse development. Development. 1999 Feb;126(4):781–791. doi: 10.1242/dev.126.4.781. [DOI] [PubMed] [Google Scholar]
- Lu H. S., Chang D., Philo J. S., Zhang K., Narhi L. O., Liu N., Zhang M., Sun J., Wen J., Yanagihara D. Studies on the structure and function of glycosylated and nonglycosylated neu differentiation factors. Similarities and differences of the alpha and beta isoforms. J Biol Chem. 1995 Mar 3;270(9):4784–4791. doi: 10.1074/jbc.270.9.4784. [DOI] [PubMed] [Google Scholar]
- Mount S. M., Burks C., Hertz G., Stormo G. D., White O., Fields C. Splicing signals in Drosophila: intron size, information content, and consensus sequences. Nucleic Acids Res. 1992 Aug 25;20(16):4255–4262. doi: 10.1093/nar/20.16.4255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mykles D. L. Structure and functions of arthropod proteasomes. Mol Biol Rep. 1999 Apr;26(1-2):103–111. doi: 10.1023/a:1006976524916. [DOI] [PubMed] [Google Scholar]
- Neuman-Silberberg F. S., Schüpbach T. The Drosophila dorsoventral patterning gene gurken produces a dorsally localized RNA and encodes a TGF alpha-like protein. Cell. 1993 Oct 8;75(1):165–174. [PubMed] [Google Scholar]
- Ogiso Hideo, Ishitani Ryuichiro, Nureki Osamu, Fukai Shuya, Yamanaka Mari, Kim Jae-Hoon, Saito Kazuki, Sakamoto Ayako, Inoue Mio, Shirouzu Mikako. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell. 2002 Sep 20;110(6):775–787. doi: 10.1016/s0092-8674(02)00963-7. [DOI] [PubMed] [Google Scholar]
- Olayioye M. A., Neve R. M., Lane H. A., Hynes N. E. The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J. 2000 Jul 3;19(13):3159–3167. doi: 10.1093/emboj/19.13.3159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patel N. H. Imaging neuronal subsets and other cell types in whole-mount Drosophila embryos and larvae using antibody probes. Methods Cell Biol. 1994;44:445–487. doi: 10.1016/s0091-679x(08)60927-9. [DOI] [PubMed] [Google Scholar]
- Reich Aderet, Shilo Ben-Zion. Keren, a new ligand of the Drosophila epidermal growth factor receptor, undergoes two modes of cleavage. EMBO J. 2002 Aug 15;21(16):4287–4296. doi: 10.1093/emboj/cdf439. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rutledge B. J., Zhang K., Bier E., Jan Y. N., Perrimon N. The Drosophila spitz gene encodes a putative EGF-like growth factor involved in dorsal-ventral axis formation and neurogenesis. Genes Dev. 1992 Aug;6(8):1503–1517. doi: 10.1101/gad.6.8.1503. [DOI] [PubMed] [Google Scholar]
- Schnepp B., Donaldson T., Grumbling G., Ostrowski S., Schweitzer R., Shilo B. Z., Simcox A. EGF domain swap converts a drosophila EGF receptor activator into an inhibitor. Genes Dev. 1998 Apr 1;12(7):908–913. doi: 10.1101/gad.12.7.908. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schnepp B., Grumbling G., Donaldson T., Simcox A. Vein is a novel component in the Drosophila epidermal growth factor receptor pathway with similarity to the neuregulins. Genes Dev. 1996 Sep 15;10(18):2302–2313. doi: 10.1101/gad.10.18.2302. [DOI] [PubMed] [Google Scholar]
- Schweitzer R., Howes R., Smith R., Shilo B. Z., Freeman M. Inhibition of Drosophila EGF receptor activation by the secreted protein Argos. Nature. 1995 Aug 24;376(6542):699–702. doi: 10.1038/376699a0. [DOI] [PubMed] [Google Scholar]
- Schweitzer R., Shaharabany M., Seger R., Shilo B. Z. Secreted Spitz triggers the DER signaling pathway and is a limiting component in embryonic ventral ectoderm determination. Genes Dev. 1995 Jun 15;9(12):1518–1529. doi: 10.1101/gad.9.12.1518. [DOI] [PubMed] [Google Scholar]
- Shilo Ben Zion. Signaling by the Drosophila epidermal growth factor receptor pathway during development. Exp Cell Res. 2003 Mar 10;284(1):140–149. doi: 10.1016/s0014-4827(02)00094-0. [DOI] [PubMed] [Google Scholar]
- Simcox A. A., Grumbling G., Schnepp B., Bennington-Mathias C., Hersperger E., Shearn A. Molecular, phenotypic, and expression analysis of vein, a gene required for growth of the Drosophila wing disc. Dev Biol. 1996 Aug 1;177(2):475–489. doi: 10.1006/dbio.1996.0179. [DOI] [PubMed] [Google Scholar]
- Stein R. A., Staros J. V. Evolutionary analysis of the ErbB receptor and ligand families. J Mol Evol. 2000 May;50(5):397–412. doi: 10.1007/s002390010043. [DOI] [PubMed] [Google Scholar]
- Tsruya Rachel, Schlesinger Ayelet, Reich Aderet, Gabay Limor, Sapir Amir, Shilo Ben-Zion. Intracellular trafficking by Star regulates cleavage of the Drosophila EGF receptor ligand Spitz. Genes Dev. 2002 Jan 15;16(2):222–234. doi: 10.1101/gad.214202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Urban S., Lee J. R., Freeman M. Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell. 2001 Oct 19;107(2):173–182. doi: 10.1016/s0092-8674(01)00525-6. [DOI] [PubMed] [Google Scholar]
- Urban Sinisa, Lee Jeffrey R., Freeman Matthew. A family of Rhomboid intramembrane proteases activates all Drosophila membrane-tethered EGF ligands. EMBO J. 2002 Aug 15;21(16):4277–4286. doi: 10.1093/emboj/cdf434. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wessells R. J., Grumbling G., Donaldson T., Wang S. H., Simcox A. Tissue-specific regulation of vein/EGF receptor signaling in Drosophila. Dev Biol. 1999 Dec 1;216(1):243–259. doi: 10.1006/dbio.1999.9459. [DOI] [PubMed] [Google Scholar]
- Wieschaus E., Perrimon N., Finkelstein R. orthodenticle activity is required for the development of medial structures in the larval and adult epidermis of Drosophila. Development. 1992 Jul;115(3):801–811. doi: 10.1242/dev.115.3.801. [DOI] [PubMed] [Google Scholar]
- Yarnitzky T., Min L., Volk T. The Drosophila neuregulin homolog Vein mediates inductive interactions between myotubes and their epidermal attachment cells. Genes Dev. 1997 Oct 15;11(20):2691–2700. doi: 10.1101/gad.11.20.2691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zecca Myriam, Struhl Gary. Subdivision of the Drosophila wing imaginal disc by EGFR-mediated signaling. Development. 2002 Mar;129(6):1357–1368. doi: 10.1242/dev.129.6.1357. [DOI] [PubMed] [Google Scholar]
- van de Poll M. L., van Vugt M. J., Lenferink A. E., van Zoelen E. J. Insertion of Argos sequences into the B-loop of epidermal growth factor results in a low-affinity ligand with strong agonistic activity. Biochemistry. 1997 Jun 17;36(24):7425–7431. doi: 10.1021/bi970227f. [DOI] [PubMed] [Google Scholar]