Skip to main content
Genetics logoLink to Genetics
. 2004 Jun;167(2):699–705. doi: 10.1534/genetics.103.025411

Evidence for multiple cycles of strand invasion during repair of double-strand gaps in Drosophila.

Mitch McVey 1, Melissa Adams 1, Eric Staeva-Vieira 1, Jeff J Sekelsky 1
PMCID: PMC1470890  PMID: 15238522

Abstract

DNA double-strand breaks (DSBs), a major source of genome instability, are often repaired through homologous recombination pathways. Models for these pathways have been proposed, but the precise mechanisms and the rules governing their use remain unclear. In Drosophila, the synthesis-dependent strand annealing (SDSA) model can explain most DSB repair. To investigate SDSA, we induced DSBs by excision of a P element from the male X chromosome, which produces a 14-kb gap relative to the sister chromatid. In wild-type males, repair synthesis tracts are usually long, resulting in frequent restoration of the P element. However, repair synthesis is often incomplete, resulting in internally deleted P elements. We examined the effects of mutations in spn-A, which encodes the Drosophila Rad51 ortholog. As expected, there is little or no repair synthesis in homozygous spn-A mutants after P excision. However, heterozygosity for spn-A mutations also resulted in dramatic reductions in the lengths of repair synthesis tracts. These findings support a model in which repair DNA synthesis is not highly processive. We discuss a model wherein repair of a double-strand gap requires multiple cycles of strand invasion, synthesis, and dissociation of the nascent strand. After dissociation, the nascent strand may anneal to a complementary single strand, reinvade a template to be extended by additional synthesis, or undergo end joining. This model can explain aborted SDSA repair events and the prevalence of internally deleted transposable elements in genomes.

Full Text

The Full Text of this article is available as a PDF (180.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams Melissa D., McVey Mitch, Sekelsky Jeff J. Drosophila BLM in double-strand break repair by synthesis-dependent strand annealing. Science. 2003 Jan 10;299(5604):265–267. doi: 10.1126/science.1077198. [DOI] [PubMed] [Google Scholar]
  2. Baumann P., West S. C. The human Rad51 protein: polarity of strand transfer and stimulation by hRP-A. EMBO J. 1997 Sep 1;16(17):5198–5206. doi: 10.1093/emboj/16.17.5198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beall E. L., Rio D. C. Drosophila P-element transposase is a novel site-specific endonuclease. Genes Dev. 1997 Aug 15;11(16):2137–2151. doi: 10.1101/gad.11.16.2137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Engels W. R., Johnson-Schlitz D. M., Eggleston W. B., Sved J. High-frequency P element loss in Drosophila is homolog dependent. Cell. 1990 Aug 10;62(3):515–525. doi: 10.1016/0092-8674(90)90016-8. [DOI] [PubMed] [Google Scholar]
  5. Fishman-Lobell J., Rudin N., Haber J. E. Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated. Mol Cell Biol. 1992 Mar;12(3):1292–1303. doi: 10.1128/mcb.12.3.1292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Formosa T., Alberts B. M. DNA synthesis dependent on genetic recombination: characterization of a reaction catalyzed by purified bacteriophage T4 proteins. Cell. 1986 Dec 5;47(5):793–806. doi: 10.1016/0092-8674(86)90522-2. [DOI] [PubMed] [Google Scholar]
  7. Gloor G. B., Preston C. R., Johnson-Schlitz D. M., Nassif N. A., Phillis R. W., Benz W. K., Robertson H. M., Engels W. R. Type I repressors of P element mobility. Genetics. 1993 Sep;135(1):81–95. doi: 10.1093/genetics/135.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Haber J. E. Partners and pathwaysrepairing a double-strand break. Trends Genet. 2000 Jun;16(6):259–264. doi: 10.1016/s0168-9525(00)02022-9. [DOI] [PubMed] [Google Scholar]
  9. Kurkulos M., Weinberg J. M., Roy D., Mount S. M. P element-mediated in vivo deletion analysis of white-apricot: deletions between direct repeats are strongly favored. Genetics. 1994 Mar;136(3):1001–1011. doi: 10.1093/genetics/136.3.1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lander E. S., Linton L. M., Birren B., Nusbaum C., Zody M. C., Baldwin J., Devon K., Dewar K., Doyle M., FitzHugh W. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860–921. doi: 10.1038/35057062. [DOI] [PubMed] [Google Scholar]
  11. Nassif N., Penney J., Pal S., Engels W. R., Gloor G. B. Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Mol Cell Biol. 1994 Mar;14(3):1613–1625. doi: 10.1128/mcb.14.3.1613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. O'Hare K., Rubin G. M. Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell. 1983 Aug;34(1):25–35. doi: 10.1016/0092-8674(83)90133-2. [DOI] [PubMed] [Google Scholar]
  13. Preston Christine R., Engels William, Flores Carlos. Efficient repair of DNA breaks in Drosophila: evidence for single-strand annealing and competition with other repair pathways. Genetics. 2002 Jun;161(2):711–720. doi: 10.1093/genetics/161.2.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pâques F., Leung W. Y., Haber J. E. Expansions and contractions in a tandem repeat induced by double-strand break repair. Mol Cell Biol. 1998 Apr;18(4):2045–2054. doi: 10.1128/mcb.18.4.2045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Richardson C., Jasin M. Coupled homologous and nonhomologous repair of a double-strand break preserves genomic integrity in mammalian cells. Mol Cell Biol. 2000 Dec;20(23):9068–9075. doi: 10.1128/mcb.20.23.9068-9075.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rubin E., Levy A. A. Abortive gap repair: underlying mechanism for Ds element formation. Mol Cell Biol. 1997 Nov;17(11):6294–6302. doi: 10.1128/mcb.17.11.6294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Solinger Jachen A., Kiianitsa Konstantin, Heyer Wolf-Dietrich. Rad54, a Swi2/Snf2-like recombinational repair protein, disassembles Rad51:dsDNA filaments. Mol Cell. 2002 Nov;10(5):1175–1188. doi: 10.1016/s1097-2765(02)00743-8. [DOI] [PubMed] [Google Scholar]
  18. Staeva-Vieira Eric, Yoo Siuk, Lehmann Ruth. An essential role of DmRad51/SpnA in DNA repair and meiotic checkpoint control. EMBO J. 2003 Nov 3;22(21):5863–5874. doi: 10.1093/emboj/cdg564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sung Patrick, Krejci Lumir, Van Komen Stephen, Sehorn Michael G. Rad51 recombinase and recombination mediators. J Biol Chem. 2003 Aug 11;278(44):42729–42732. doi: 10.1074/jbc.R300027200. [DOI] [PubMed] [Google Scholar]
  20. Svoboda Y. H., Robson M. K., Sved J. A. P-element-induced male recombination can be produced in Drosophila melanogaster by combining end-deficient elements in trans. Genetics. 1995 Apr;139(4):1601–1610. doi: 10.1093/genetics/139.4.1601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Thompson Larry H., Schild David. Recombinational DNA repair and human disease. Mutat Res. 2002 Nov 30;509(1-2):49–78. doi: 10.1016/s0027-5107(02)00224-5. [DOI] [PubMed] [Google Scholar]
  22. Yan X., Martínez-Férez I. M., Kavchok S., Dooner H. K. Origination of Ds elements from Ac elements in maize: evidence for rare repair synthesis at the site of Ac excision. Genetics. 1999 Aug;152(4):1733–1740. doi: 10.1093/genetics/152.4.1733. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES