Skip to main content
Genetics logoLink to Genetics
. 2004 Jun;167(2):919–929. doi: 10.1534/genetics.104.028043

Isolation and gene expression analysis of Arabidopsis thaliana mutants with constitutive expression of ATL2, an early elicitor-response RING-H2 zinc-finger gene.

Mario Serrano 1, Plinio Guzmán 1
PMCID: PMC1470891  PMID: 15238540

Abstract

Genes with unstable transcripts often encode proteins that play important regulatory roles. ATL2 is a member of a multigene family coding highly related RING-H2 zinc-finger proteins that may function as E3 ubiquitin ligases. ATL2 mRNA accumulation occurs rapidly and transiently after incubation with elicitors of pathogen response. We screened 50,000 M(2) families from a line that carries a fusion of pATL2 to the GUS reporter gene and isolated five mutants, which we named eca (expresión constitutiva de ATL2), that showed constitutive expression of the reporter gene. One mutant exhibits a drastic stunted phenotype while the other four grow similarly to wild type. Two early chitin-induced genes and known pathogenesis-related genes such as NPR1, PAL, and CHS are activated in all the mutants whereas members of the ATL family and PR-1 and PDF2.1, which are markers of the salicylic acid (SA) jasmonate (JA) defense-response pathways, display differential expression between the mutants. These observations indicate that the ECA gene products may function in the early steps of an elicitor-response pathway, although some of them may function at other stages on the SA or JA defense-response pathways. Likewise, the fact that ATL2 and other members of the ATL family are activated in eca mutants links the induction of this putative class of ubiquitin ligases to plant defense signaling pathways.

Full Text

The Full Text of this article is available as a PDF (396.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Austin Mark J., Muskett Paul, Kahn Katherine, Feys Bart J., Jones Jonathan D. G., Parker Jane E. Regulatory role of SGT1 in early R gene-mediated plant defenses. Science. 2002 Feb 14;295(5562):2077–2080. doi: 10.1126/science.1067747. [DOI] [PubMed] [Google Scholar]
  2. Azevedo Cristina, Sadanandom Ari, Kitagawa Katsumi, Freialdenhoven Andreas, Shirasu Ken, Schulze-Lefert Paul. The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science. 2002 Feb 14;295(5562):2073–2076. doi: 10.1126/science.1067554. [DOI] [PubMed] [Google Scholar]
  3. Borden K. L., Freemont P. S. The RING finger domain: a recent example of a sequence-structure family. Curr Opin Struct Biol. 1996 Jun;6(3):395–401. doi: 10.1016/s0959-440x(96)80060-1. [DOI] [PubMed] [Google Scholar]
  4. Bowling S. A., Guo A., Cao H., Gordon A. S., Klessig D. F., Dong X. A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. Plant Cell. 1994 Dec;6(12):1845–1857. doi: 10.1105/tpc.6.12.1845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clarke J. D., Aarts N., Feys B. J., Dong X., Parker J. E. Constitutive disease resistance requires EDS1 in the Arabidopsis mutants cpr1 and cpr6 and is partially EDS1-dependent in cpr5. Plant J. 2001 May;26(4):409–420. doi: 10.1046/j.1365-313x.2001.2641041.x. [DOI] [PubMed] [Google Scholar]
  6. Day R. B., Okada M., Ito Y., Tsukada K., Zaghouani H., Shibuya N., Stacey G. Binding site for chitin oligosaccharides in the soybean plasma membrane. Plant Physiol. 2001 Jul;126(3):1162–1173. doi: 10.1104/pp.126.3.1162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dietrich A., Mayer J. E., Hahlbrock K. Fungal elicitor triggers rapid, transient, and specific protein phosphorylation in parsley cell suspension cultures. J Biol Chem. 1990 Apr 15;265(11):6360–6368. [PubMed] [Google Scholar]
  8. Dietrich R. A., Delaney T. P., Uknes S. J., Ward E. R., Ryals J. A., Dangl J. L. Arabidopsis mutants simulating disease resistance response. Cell. 1994 May 20;77(4):565–577. doi: 10.1016/0092-8674(94)90218-6. [DOI] [PubMed] [Google Scholar]
  9. Dong X., Mindrinos M., Davis K. R., Ausubel F. M. Induction of Arabidopsis defense genes by virulent and avirulent Pseudomonas syringae strains and by a cloned avirulence gene. Plant Cell. 1991 Jan;3(1):61–72. doi: 10.1105/tpc.3.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Durrant W. E., Rowland O., Piedras P., Hammond-Kosack K. E., Jones J. D. cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles. Plant Cell. 2000 Jun;12(6):963–977. doi: 10.1105/tpc.12.6.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ebel J. Oligoglucoside elicitor-mediated activation of plant defense. Bioessays. 1998 Jul;20(7):569–576. doi: 10.1002/(SICI)1521-1878(199807)20:7<569::AID-BIES8>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  12. Felix G., Grosskopf D. G., Regenass M., Boller T. Rapid changes of protein phosphorylation are involved in transduction of the elicitor signal in plant cells. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8831–8834. doi: 10.1073/pnas.88.19.8831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fellbrich G., Blume B., Brunner F., Hirt H., Kroj T., Ligterink W., Romanski A., Nürnberger T. Phytophthora parasitica elicitor-induced reactions in cells of Petroselinum crispum. Plant Cell Physiol. 2000 Jun;41(6):692–701. doi: 10.1093/pcp/41.6.692. [DOI] [PubMed] [Google Scholar]
  14. Freemont P. S. The RING finger. A novel protein sequence motif related to the zinc finger. Ann N Y Acad Sci. 1993 Jun 11;684:174–192. doi: 10.1111/j.1749-6632.1993.tb32280.x. [DOI] [PubMed] [Google Scholar]
  15. Glazebrook Jane, Chen Wenqiong, Estes Bram, Chang Hur-Song, Nawrath Christiane, Métraux Jean-Pierre, Zhu Tong, Katagiri Fumiaki. Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J. 2003 Apr;34(2):217–228. doi: 10.1046/j.1365-313x.2003.01717.x. [DOI] [PubMed] [Google Scholar]
  16. Granado J., Felix G., Boller T. Perception of Fungal Sterols in Plants (Subnanomolar Concentrations of Ergosterol Elicit Extracellular Alkalinization in Tomato Cells). Plant Physiol. 1995 Feb;107(2):485–490. doi: 10.1104/pp.107.2.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Guzmán P., Ecker J. R. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell. 1990 Jun;2(6):513–523. doi: 10.1105/tpc.2.6.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hahlbrock K., Scheel D., Logemann E., Nürnberger T., Parniske M., Reinold S., Sacks W. R., Schmelzer E. Oligopeptide elicitor-mediated defense gene activation in cultured parsley cells. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4150–4157. doi: 10.1073/pnas.92.10.4150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hare Peter D., Seo Hak Soo, Yang Jun-Yi, Chua Nam-Hai. Modulation of sensitivity and selectivity in plant signaling by proteasomal destabilization. Curr Opin Plant Biol. 2003 Oct;6(5):453–462. doi: 10.1016/s1369-5266(03)00080-3. [DOI] [PubMed] [Google Scholar]
  20. Hoffart Nancy, Cobb Ann Kuckelman, Clinical Pathways Study Group Assessing clinical pathways use in a community hospital: it depends on what "use" means. Jt Comm J Qual Improv. 2002 Apr;28(4):167–179. doi: 10.1016/s1070-3241(02)28017-7. [DOI] [PubMed] [Google Scholar]
  21. Jackson P. K., Eldridge A. G., Freed E., Furstenthal L., Hsu J. Y., Kaiser B. K., Reimann J. D. The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol. 2000 Oct;10(10):429–439. doi: 10.1016/s0962-8924(00)01834-1. [DOI] [PubMed] [Google Scholar]
  22. Joazeiro C. A., Weissman A. M. RING finger proteins: mediators of ubiquitin ligase activity. Cell. 2000 Sep 1;102(5):549–552. doi: 10.1016/s0092-8674(00)00077-5. [DOI] [PubMed] [Google Scholar]
  23. Katoh Shizue, Hong Cui, Tsunoda Yuki, Murata Katsuyoshi, Takai Ryota, Minami Eiichi, Yamazaki Toshimasa, Katoh Etsuko. High precision NMR structure and function of the RING-H2 finger domain of EL5, a rice protein whose expression is increased upon exposure to pathogen-derived oligosaccharides. J Biol Chem. 2003 Feb 14;278(17):15341–15348. doi: 10.1074/jbc.M210531200. [DOI] [PubMed] [Google Scholar]
  24. Kitagawa K., Skowyra D., Elledge S. J., Harper J. W., Hieter P. SGT1 encodes an essential component of the yeast kinetochore assembly pathway and a novel subunit of the SCF ubiquitin ligase complex. Mol Cell. 1999 Jul;4(1):21–33. doi: 10.1016/s1097-2765(00)80184-7. [DOI] [PubMed] [Google Scholar]
  25. Klessig D. F., Durner J., Noad R., Navarre D. A., Wendehenne D., Kumar D., Zhou J. M., Shah J., Zhang S., Kachroo P. Nitric oxide and salicylic acid signaling in plant defense. Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8849–8855. doi: 10.1073/pnas.97.16.8849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kunkel Barbara N., Brooks David M. Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol. 2002 Aug;5(4):325–331. doi: 10.1016/s1369-5266(02)00275-3. [DOI] [PubMed] [Google Scholar]
  27. Maleck Klaus, Neuenschwander Urs, Cade Rebecca M., Dietrich Robert A., Dangl Jeffery L., Ryals John A. Isolation and characterization of broad-spectrum disease-resistant Arabidopsis mutants. Genetics. 2002 Apr;160(4):1661–1671. doi: 10.1093/genetics/160.4.1661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Martínez-García M., Garcidueñas-Piña C., Guzmán P. Gene isolation in Arabidopsis thaliana by conditional overexpression of cDNAs toxic to Saccharomyces cerevisiae: identification of a novel early response zinc-finger gene. Mol Gen Genet. 1996 Oct 16;252(5):587–596. doi: 10.1007/BF02172405. [DOI] [PubMed] [Google Scholar]
  29. Mou Zhonglin, Fan Weihua, Dong Xinnian. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell. 2003 Jun 27;113(7):935–944. doi: 10.1016/s0092-8674(03)00429-x. [DOI] [PubMed] [Google Scholar]
  30. Müller J., Staehelin C., Xie Z. P., Neuhaus-Url G., Boller T. Nod factors and chitooligomers elicit an increase in cytosolic calcium in aequorin-expressing soybean cells. Plant Physiol. 2000 Oct;124(2):733–740. doi: 10.1104/pp.124.2.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nimchuk Zachary, Eulgem Thomas, Holt Ben F., 3rd, Dangl Jeffery L. Recognition and response in the plant immune system. Annu Rev Genet. 2003;37:579–609. doi: 10.1146/annurev.genet.37.110801.142628. [DOI] [PubMed] [Google Scholar]
  32. Nishizawa Y., Kawakami A., Hibi T., He D. Y., Shibuya N., Minami E. Regulation of the chitinase gene expression in suspension-cultured rice cells by N-acetylchitooligosaccharides: differences in the signal transduction pathways leading to the activation of elicitor-responsive genes. Plant Mol Biol. 1999 Mar;39(5):907–914. doi: 10.1023/a:1006161802334. [DOI] [PubMed] [Google Scholar]
  33. Ramonell Katrina M., Somerville Shauna. The genomics parade of defense responses: to infinity and beyond. Curr Opin Plant Biol. 2002 Aug;5(4):291–294. doi: 10.1016/s1369-5266(02)00266-2. [DOI] [PubMed] [Google Scholar]
  34. Reymond P., Farmer E. E. Jasmonate and salicylate as global signals for defense gene expression. Curr Opin Plant Biol. 1998 Oct;1(5):404–411. doi: 10.1016/s1369-5266(98)80264-1. [DOI] [PubMed] [Google Scholar]
  35. Salinas-Mondragón R. E., Garcidueñas-Piña C., Guzmán P. Early elicitor induction in members of a novel multigene family coding for highly related RING-H2 proteins in Arabidopsis thaliana. Plant Mol Biol. 1999 Jul;40(4):579–590. doi: 10.1023/a:1006267201855. [DOI] [PubMed] [Google Scholar]
  36. Shah J., Kachroo P., Klessig D. F. The Arabidopsis ssi1 mutation restores pathogenesis-related gene expression in npr1 plants and renders defensin gene expression salicylic acid dependent. Plant Cell. 1999 Feb;11(2):191–206. doi: 10.1105/tpc.11.2.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shah Jyoti. The salicylic acid loop in plant defense. Curr Opin Plant Biol. 2003 Aug;6(4):365–371. doi: 10.1016/s1369-5266(03)00058-x. [DOI] [PubMed] [Google Scholar]
  38. Shibuya N., Kaku H., Kuchitsu K., Maliarik M. J. Identification of a novel high-affinity binding site for N-acetylchitooligosaccharide elicitor in the membrane fraction from suspension-cultured rice cells. FEBS Lett. 1993 Aug 23;329(1-2):75–78. doi: 10.1016/0014-5793(93)80197-3. [DOI] [PubMed] [Google Scholar]
  39. Staskawicz B. J., Mudgett M. B., Dangl J. L., Galan J. E. Common and contrasting themes of plant and animal diseases. Science. 2001 Jun 22;292(5525):2285–2289. doi: 10.1126/science.1062013. [DOI] [PubMed] [Google Scholar]
  40. Takai R., Hasegawa K., Kaku H., Shibuya N., Minami E. Isolation and analysis of expression mechanisms of a rice gene, EL5, which shows structural similarity to ATL family from Arabidopsis, in response to N-acetylchitooligosaccharide elicitor. Plant Sci. 2001 Mar;160(4):577–583. doi: 10.1016/s0168-9452(00)00390-3. [DOI] [PubMed] [Google Scholar]
  41. Turner John G., Ellis Christine, Devoto Alessandra. The jasmonate signal pathway. Plant Cell. 2002;14 (Suppl):S153–S164. doi: 10.1105/tpc.000679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zhang Bing, Ramonell Katrina, Somerville Shauna, Stacey Gary. Characterization of early, chitin-induced gene expression in Arabidopsis. Mol Plant Microbe Interact. 2002 Sep;15(9):963–970. doi: 10.1094/MPMI.2002.15.9.963. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES