Skip to main content
Genetics logoLink to Genetics
. 2004 Jun;167(2):907–917. doi: 10.1534/genetics.103.024810

Light-response quantitative trait loci identified with composite interval and eXtreme array mapping in Arabidopsis thaliana.

David J Wolyn 1, Justin O Borevitz 1, Olivier Loudet 1, Chris Schwartz 1, Julin Maloof 1, Joseph R Ecker 1, Charles C Berry 1, Joanne Chory 1
PMCID: PMC1470895  PMID: 15238539

Abstract

Genetic analysis of natural variation in ecotypes of Arabidopsis thaliana can facilitate the discovery of new genes or of allelic variants of previously identified genes controlling physiological processes in plants. We mapped quantitative trait loci (QTL) for light response in recombinant inbred lines (RILs) derived from the Columbia and Kashmir accessions via two methods: composite interval mapping and eXtreme array mapping (XAM). After measuring seedling hypocotyl lengths in blue, red, far-red, and white light, and in darkness, eight QTL were identified by composite interval mapping and five localized near photoreceptor loci. Two QTL in blue light were associated with CRY1 and CRY2, two in red light were near PHYB and PHYC, and one in far-red light localized near PHYA. The RED2 and RED5 QTL were verified in segregating lines. XAM was tested for the identification of QTL in red light with pools of RILs selected for extreme phenotypes. Thousands of single feature polymorphisms detected by differential DNA hybridized to high-density oligo-nucleotide arrays were used to estimate allele frequency differences between the pools. The RED2 QTL was identified clearly; differences exceeded a threshold of significance determined by simulations. The sensitivities of XAM to population type and size and genetic models were also determined by simulation analysis.

Full Text

The Full Text of this article is available as a PDF (242.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad M., Cashmore A. R. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature. 1993 Nov 11;366(6451):162–166. doi: 10.1038/366162a0. [DOI] [PubMed] [Google Scholar]
  2. Ahmad M., Cashmore A. R. The blue-light receptor cryptochrome 1 shows functional dependence on phytochrome A or phytochrome B in Arabidopsis thaliana. Plant J. 1997 Mar;11(3):421–427. doi: 10.1046/j.1365-313x.1997.11030421.x. [DOI] [PubMed] [Google Scholar]
  3. Alonso-Blanco C., El-Assal S. E., Coupland G., Koornneef M. Analysis of natural allelic variation at flowering time loci in the Landsberg erecta and Cape Verde Islands ecotypes of Arabidopsis thaliana. Genetics. 1998 Jun;149(2):749–764. doi: 10.1093/genetics/149.2.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Borevitz Justin O., Liang David, Plouffe David, Chang Hur-Song, Zhu Tong, Weigel Detlef, Berry Charles C., Winzeler Elizabeth, Chory Joanne. Large-scale identification of single-feature polymorphisms in complex genomes. Genome Res. 2003 Mar;13(3):513–523. doi: 10.1101/gr.541303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Borevitz Justin O., Maloof Julin N., Lutes Jason, Dabi Tsegaye, Redfern Joanna L., Trainer Gabriel T., Werner Jonathan D., Asami Tadao, Berry Charles C., Weigel Detlef. Quantitative trait loci controlling light and hormone response in two accessions of Arabidopsis thaliana. Genetics. 2002 Feb;160(2):683–696. doi: 10.1093/genetics/160.2.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Botto Javier F., Alonso-Blanco Carlos, Garzarón Ignacio, Sánchez Rodolfo A., Casal Jorge J. The Cape Verde Islands allele of cryptochrome 2 enhances cotyledon unfolding in the absence of blue light in Arabidopsis. Plant Physiol. 2003 Nov 6;133(4):1547–1556. doi: 10.1104/pp.103.029546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Churchill G. A., Doerge R. W. Empirical threshold values for quantitative trait mapping. Genetics. 1994 Nov;138(3):963–971. doi: 10.1093/genetics/138.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Churchill G. A., Giovannoni J. J., Tanksley S. D. Pooled-sampling makes high-resolution mapping practical with DNA markers. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):16–20. doi: 10.1073/pnas.90.1.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dehesh K., Franci C., Parks B. M., Seeley K. A., Short T. W., Tepperman J. M., Quail P. H. Arabidopsis HY8 locus encodes phytochrome A. Plant Cell. 1993 Sep;5(9):1081–1088. doi: 10.1105/tpc.5.9.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. El-Din El-Assal S., Alonso-Blanco C., Peeters A. J., Raz V., Koornneef M. A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nat Genet. 2001 Dec;29(4):435–440. doi: 10.1038/ng767. [DOI] [PubMed] [Google Scholar]
  11. Guo H., Duong H., Ma N., Lin C. The Arabidopsis blue light receptor cryptochrome 2 is a nuclear protein regulated by a blue light-dependent post-transcriptional mechanism. Plant J. 1999 Aug;19(3):279–287. doi: 10.1046/j.1365-313x.1999.00525.x. [DOI] [PubMed] [Google Scholar]
  12. Jansen R. C., Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics. 1994 Apr;136(4):1447–1455. doi: 10.1093/genetics/136.4.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jiang C., Zeng Z. B. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics. 1995 Jul;140(3):1111–1127. doi: 10.1093/genetics/140.3.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kevei Eva, Nagy Ferenc. Phytochrome controlled signalling cascades in higher plants. Physiol Plant. 2003 Mar;117(3):305–313. doi: 10.1034/j.1399-3054.2003.00049.x. [DOI] [PubMed] [Google Scholar]
  15. Kobayashi Yuriko, Koyama Hiroyuki. QTL analysis of Al tolerance in recombinant inbred lines of Arabidopsis thaliana. Plant Cell Physiol. 2002 Dec;43(12):1526–1533. doi: 10.1093/pcp/pcf174. [DOI] [PubMed] [Google Scholar]
  16. Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
  17. Loudet Olivier, Chaillou Sylvain, Krapp Anne, Daniel-Vedele Françoise. Quantitative trait loci analysis of water and anion contents in interaction with nitrogen availability in Arabidopsis thaliana. Genetics. 2003 Feb;163(2):711–722. doi: 10.1093/genetics/163.2.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Loudet Olivier, Chaillou Sylvain, Merigout Patricia, Talbotec Joël, Daniel-Vedele Françoise. Quantitative trait loci analysis of nitrogen use efficiency in Arabidopsis. Plant Physiol. 2003 Jan;131(1):345–358. doi: 10.1104/pp.102.010785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Maloof J. N., Borevitz J. O., Dabi T., Lutes J., Nehring R. B., Redfern J. L., Trainer G. T., Wilson J. M., Asami T., Berry C. C. Natural variation in light sensitivity of Arabidopsis. Nat Genet. 2001 Dec;29(4):441–446. doi: 10.1038/ng777. [DOI] [PubMed] [Google Scholar]
  20. Michelmore R. W., Paran I., Kesseli R. V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9828–9832. doi: 10.1073/pnas.88.21.9828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Monte Elena, Alonso José M., Ecker Joseph R., Zhang Yuelin, Li Xin, Young Jeff, Austin-Phillips Sandra, Quail Peter H. Isolation and characterization of phyC mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways. Plant Cell. 2003 Sep;15(9):1962–1980. doi: 10.1105/tpc.012971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Más P., Devlin P. F., Panda S., Kay S. A. Functional interaction of phytochrome B and cryptochrome 2. Nature. 2000 Nov 9;408(6809):207–211. doi: 10.1038/35041583. [DOI] [PubMed] [Google Scholar]
  23. Neff M. M., Chory J. Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development. Plant Physiol. 1998 Sep;118(1):27–35. doi: 10.1104/pp.118.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Parks B. M., Quail P. H. hy8, a new class of arabidopsis long hypocotyl mutants deficient in functional phytochrome A. Plant Cell. 1993 Jan;5(1):39–48. doi: 10.1105/tpc.5.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Quail Peter H. Phytochrome photosensory signalling networks. Nat Rev Mol Cell Biol. 2002 Feb;3(2):85–93. doi: 10.1038/nrm728. [DOI] [PubMed] [Google Scholar]
  26. Reed J. W., Nagatani A., Elich T. D., Fagan M., Chory J. Phytochrome A and Phytochrome B Have Overlapping but Distinct Functions in Arabidopsis Development. Plant Physiol. 1994 Apr;104(4):1139–1149. doi: 10.1104/pp.104.4.1139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Reed J. W., Nagpal P., Poole D. S., Furuya M., Chory J. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell. 1993 Feb;5(2):147–157. doi: 10.1105/tpc.5.2.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Somers D. E., Sharrock R. A., Tepperman J. M., Quail P. H. The hy3 Long Hypocotyl Mutant of Arabidopsis Is Deficient in Phytochrome B. Plant Cell. 1991 Dec;3(12):1263–1274. doi: 10.1105/tpc.3.12.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tanksley S. D. Mapping polygenes. Annu Rev Genet. 1993;27:205–233. doi: 10.1146/annurev.ge.27.120193.001225. [DOI] [PubMed] [Google Scholar]
  30. Wang Haiyang, Deng Xing Wang. Dissecting the phytochrome A-dependent signaling network in higher plants. Trends Plant Sci. 2003 Apr;8(4):172–178. doi: 10.1016/S1360-1385(03)00049-9. [DOI] [PubMed] [Google Scholar]
  31. Wester L., Somers D. E., Clack T., Sharrock R. A. Transgenic complementation of the hy3 phytochrome B mutation and response to PHYB gene copy number in Arabidopsis. Plant J. 1994 Feb;5(2):261–272. doi: 10.1046/j.1365-313x.1994.05020261.x. [DOI] [PubMed] [Google Scholar]
  32. Whitelam G. C., Johnson E., Peng J., Carol P., Anderson M. L., Cowl J. S., Harberd N. P. Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell. 1993 Jul;5(7):757–768. doi: 10.1105/tpc.5.7.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wilson I. W., Schiff C. L., Hughes D. E., Somerville S. C. Quantitative trait loci analysis of powdery mildew disease resistance in the Arabidopsis thaliana accession kashmir-1. Genetics. 2001 Jul;158(3):1301–1309. doi: 10.1093/genetics/158.3.1301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yanovsky M. J., Casal J. J., Luppi J. P. The VLF loci, polymorphic between ecotypes Landsberg erecta and Columbia, dissect two branches of phytochrome A signal transduction that correspond to very-low-fluence and high-irradiance responses. Plant J. 1997 Sep;12(3):659–667. doi: 10.1046/j.1365-313x.1997.00659.x. [DOI] [PubMed] [Google Scholar]
  35. Zeng Z. B. Precision mapping of quantitative trait loci. Genetics. 1994 Apr;136(4):1457–1468. doi: 10.1093/genetics/136.4.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES