Abstract
Genetic transformation in insects holds great promise as a tool for genetic manipulation in species of particular scientific, economic, or medical interest. A number of transposable elements have been tested recently as potential vectors for transformation in a range of insects. Minos is one of the most promising elements because it appears to be active in diverse species and has the capacity to carry large inserts. We report here the use of the Minos element as a transformation vector in the red flour beetle Tribolium castaneum (Coleoptera), an important species for comparative developmental and pest management studies. Transgenic G(1) beetles were recovered from 32.4% of fertile G(0)'s injected with a plasmid carrying a 3xP3-EGFP-marked transposon and in vitro synthesized mRNA encoding the Minos transposase. This transformation efficiency is 2.8-fold higher than that observed when using a plasmid helper. Molecular and genetic analyses show that several independent insertions can be recovered from a single injected parent, but that the majority of transformed individuals carry single Minos insertions. These results establish Minos as one of the most efficient vectors for genetic transformation in insects. In combination with piggyBac-based transgenesis, our work allows the introduction of sophisticated multicomponent genetic tools in Tribolium.
Full Text
The Full Text of this article is available as a PDF (210.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams Melissa D., Sekelsky Jeff J. From sequence to phenotype: reverse genetics in Drosophila melanogaster. Nat Rev Genet. 2002 Mar;3(3):189–198. doi: 10.1038/nrg752. [DOI] [PubMed] [Google Scholar]
- Arcà B., Zabalou S., Loukeris T. G., Savakis C. Mobilization of a Minos transposon in Drosophila melanogaster chromosomes and chromatid repair by heteroduplex formation. Genetics. 1997 Feb;145(2):267–279. doi: 10.1093/genetics/145.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ashburner M., Hoy M. A., Peloquin J. J. Prospects for the genetic transformation of arthropods. Insect Mol Biol. 1998 Aug;7(3):201–213. doi: 10.1046/j.1365-2583.1998.00084.x. [DOI] [PubMed] [Google Scholar]
- Atkinson P. W., Pinkerton A. C., O'Brochta D. A. Genetic transformation systems in insects. Annu Rev Entomol. 2001;46:317–346. doi: 10.1146/annurev.ento.46.1.317. [DOI] [PubMed] [Google Scholar]
- Bellen H. J., O'Kane C. J., Wilson C., Grossniklaus U., Pearson R. K., Gehring W. J. P-element-mediated enhancer detection: a versatile method to study development in Drosophila. Genes Dev. 1989 Sep;3(9):1288–1300. doi: 10.1101/gad.3.9.1288. [DOI] [PubMed] [Google Scholar]
- Berghammer A. J., Klingler M., Wimmer E. A. A universal marker for transgenic insects. Nature. 1999 Nov 25;402(6760):370–371. doi: 10.1038/46463. [DOI] [PubMed] [Google Scholar]
- Berghammer A., Bucher G., Maderspacher F., Klingler M. A system to efficiently maintain embryonic lethal mutations in the flour beetle Tribolium castaneum. Dev Genes Evol. 1999 Jun;209(6):382–389. doi: 10.1007/s004270050268. [DOI] [PubMed] [Google Scholar]
- Bier E., Vaessin H., Shepherd S., Lee K., McCall K., Barbel S., Ackerman L., Carretto R., Uemura T., Grell E. Searching for pattern and mutation in the Drosophila genome with a P-lacZ vector. Genes Dev. 1989 Sep;3(9):1273–1287. doi: 10.1101/gad.3.9.1273. [DOI] [PubMed] [Google Scholar]
- Brand A. H., Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 1993 Jun;118(2):401–415. doi: 10.1242/dev.118.2.401. [DOI] [PubMed] [Google Scholar]
- Catteruccia F., Nolan T., Loukeris T. G., Blass C., Savakis C., Kafatos F. C., Crisanti A. Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature. 2000 Jun 22;405(6789):959–962. doi: 10.1038/35016096. [DOI] [PubMed] [Google Scholar]
- Cooley L., Kelley R., Spradling A. Insertional mutagenesis of the Drosophila genome with single P elements. Science. 1988 Mar 4;239(4844):1121–1128. doi: 10.1126/science.2830671. [DOI] [PubMed] [Google Scholar]
- Drabek Dubravka, Zagoraiou Laskaro, deWit Ton, Langeveld An, Roumpaki Chariklea, Mamalaki Clio, Savakis Charalambos, Grosveld Frank. Transposition of the Drosophila hydei Minos transposon in the mouse germ line. Genomics. 2003 Feb;81(2):108–111. doi: 10.1016/s0888-7543(02)00030-7. [DOI] [PubMed] [Google Scholar]
- Franz G., Loukeris T. G., Dialektaki G., Thompson C. R., Savakis C. Mobile Minos elements from Drosophila hydei encode a two-exon transposase with similarity to the paired DNA-binding domain. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4746–4750. doi: 10.1073/pnas.91.11.4746. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franz G., Savakis C. Minos, a new transposable element from Drosophila hydei, is a member of the Tc1-like family of transposons. Nucleic Acids Res. 1991 Dec 11;19(23):6646–6646. doi: 10.1093/nar/19.23.6646. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Golic K. G., Lindquist S. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell. 1989 Nov 3;59(3):499–509. doi: 10.1016/0092-8674(89)90033-0. [DOI] [PubMed] [Google Scholar]
- Hacker Udo, Nystedt Sverker, Barmchi Mojgan Padash, Horn Carsten, Wimmer Ernst A. piggyBac-based insertional mutagenesis in the presence of stably integrated P elements in Drosophila. Proc Natl Acad Sci U S A. 2003 Jun 11;100(13):7720–7725. doi: 10.1073/pnas.1230526100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Handler A. M. A current perspective on insect gene transformation. Insect Biochem Mol Biol. 2001 Feb;31(2):111–128. doi: 10.1016/s0965-1748(00)00159-4. [DOI] [PubMed] [Google Scholar]
- Handler A. M., Gomez S. P., O'Brochta D. A. A functional analysis of the P-element gene-transfer vector in insects. Arch Insect Biochem Physiol. 1993;22(3-4):373–384. doi: 10.1002/arch.940220306. [DOI] [PubMed] [Google Scholar]
- Horn C., Jaunich B., Wimmer E. A. Highly sensitive, fluorescent transformation marker for Drosophila transgenesis. Dev Genes Evol. 2000 Dec;210(12):623–629. doi: 10.1007/s004270000111. [DOI] [PubMed] [Google Scholar]
- Horn C., Wimmer E. A. A versatile vector set for animal transgenesis. Dev Genes Evol. 2000 Dec;210(12):630–637. doi: 10.1007/s004270000110. [DOI] [PubMed] [Google Scholar]
- Horn Carsten, Offen Nils, Nystedt Sverker, Häcker Udo, Wimmer Ernst A. piggyBac-based insertional mutagenesis and enhancer detection as a tool for functional insect genomics. Genetics. 2003 Feb;163(2):647–661. doi: 10.1093/genetics/163.2.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horn Carsten, Schmid Bernhard G. M., Pogoda Frank S., Wimmer Ernst A. Fluorescent transformation markers for insect transgenesis. Insect Biochem Mol Biol. 2002 Oct;32(10):1221–1235. doi: 10.1016/s0965-1748(02)00085-1. [DOI] [PubMed] [Google Scholar]
- Huet François, Lu Jeffrey T., Myrick Kyl V., Baugh L. Ryan, Crosby Madeline A., Gelbart William M. A deletion-generator compound element allows deletion saturation analysis for genomewide phenotypic annotation. Proc Natl Acad Sci U S A. 2002 Jul 2;99(15):9948–9953. doi: 10.1073/pnas.142310099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ito Junitsu, Ghosh Anil, Moreira Luciano A., Wimmer Ernst A., Jacobs-Lorena Marcelo. Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature. 2002 May 23;417(6887):452–455. doi: 10.1038/417452a. [DOI] [PubMed] [Google Scholar]
- Kapetanaki Maria G., Loukeris Thanasis G., Livadaras Ioannis, Savakis Charalambos. High frequencies of Minos transposon mobilization are obtained in insects by using in vitro synthesized mRNA as a source of transposase. Nucleic Acids Res. 2002 Aug 1;30(15):3333–3340. doi: 10.1093/nar/gkf455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klinakis A. G., Loukeris T. G., Pavlopoulos A., Savakis C. Mobility assays confirm the broad host-range activity of the Minos transposable element and validate new transformation tools. Insect Mol Biol. 2000 Jun;9(3):269–275. doi: 10.1046/j.1365-2583.2000.00183.x. [DOI] [PubMed] [Google Scholar]
- Klinakis A. G., Zagoraiou L., Vassilatis D. K., Savakis C. Genome-wide insertional mutagenesis in human cells by the Drosophila mobile element Minos. EMBO Rep. 2000 Nov;1(5):416–421. doi: 10.1093/embo-reports/kvd089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lorenzen M. D., Berghammer A. J., Brown S. J., Denell R. E., Klingler M., Beeman R. W. piggyBac-mediated germline transformation in the beetle Tribolium castaneum. Insect Mol Biol. 2003 Oct;12(5):433–440. doi: 10.1046/j.1365-2583.2003.00427.x. [DOI] [PubMed] [Google Scholar]
- Lorenzen M. D., Berghammer A. J., Brown S. J., Denell R. E., Klingler M., Beeman R. W. piggyBac-mediated germline transformation in the beetle Tribolium castaneum. Insect Mol Biol. 2003 Oct;12(5):433–440. doi: 10.1046/j.1365-2583.2003.00427.x. [DOI] [PubMed] [Google Scholar]
- Loukeris T. G., Arcà B., Livadaras I., Dialektaki G., Savakis C. Introduction of the transposable element Minos into the germ line of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9485–9489. doi: 10.1073/pnas.92.21.9485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loukeris T. G., Livadaras I., Arcà B., Zabalou S., Savakis C. Gene transfer into the medfly, Ceratitis capitata, with a Drosophila hydei transposable element. Science. 1995 Dec 22;270(5244):2002–2005. doi: 10.1126/science.270.5244.2002. [DOI] [PubMed] [Google Scholar]
- Ludwig M. Z., Bergman C., Patel N. H., Kreitman M. Evidence for stabilizing selection in a eukaryotic enhancer element. Nature. 2000 Feb 3;403(6769):564–567. doi: 10.1038/35000615. [DOI] [PubMed] [Google Scholar]
- Plasterk R. H., Izsvák Z., Ivics Z. Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet. 1999 Aug;15(8):326–332. doi: 10.1016/s0168-9525(99)01777-1. [DOI] [PubMed] [Google Scholar]
- Rubin G. M., Spradling A. C. Genetic transformation of Drosophila with transposable element vectors. Science. 1982 Oct 22;218(4570):348–353. doi: 10.1126/science.6289436. [DOI] [PubMed] [Google Scholar]
- Sasakura Yasunori, Awazu Satoko, Chiba Shota, Satoh Nori. Germ-line transgenesis of the Tc1/mariner superfamily transposon Minos in Ciona intestinalis. Proc Natl Acad Sci U S A. 2003 Jun 3;100(13):7726–7730. doi: 10.1073/pnas.1230736100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheng G., Thouvenot E., Schmucker D., Wilson D. S., Desplan C. Direct regulation of rhodopsin 1 by Pax-6/eyeless in Drosophila: evidence for a conserved function in photoreceptors. Genes Dev. 1997 May 1;11(9):1122–1131. doi: 10.1101/gad.11.9.1122. [DOI] [PubMed] [Google Scholar]
- Shimizu K., Kamba M., Sonobe H., Kanda T., Klinakis A. G., Savakis C., Tamura T. Extrachromosomal transposition of the transposable element Minos occurs in embryos of the silkworm Bombyx mori. Insect Mol Biol. 2000 Jun;9(3):277–281. doi: 10.1046/j.1365-2583.2000.00182.x. [DOI] [PubMed] [Google Scholar]
- Spradling A. C., Stern D. M., Kiss I., Roote J., Laverty T., Rubin G. M. Gene disruptions using P transposable elements: an integral component of the Drosophila genome project. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10824–10830. doi: 10.1073/pnas.92.24.10824. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spradling A. C., Stern D., Beaton A., Rhem E. J., Laverty T., Mozden N., Misra S., Rubin G. M. The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes. Genetics. 1999 Sep;153(1):135–177. doi: 10.1093/genetics/153.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sumitani M., Yamamoto D. S., Oishi K., Lee J. M., Hatakeyama M. Germline transformation of the sawfly, Athalia rosae (Hymenoptera: Symphyta), mediated by a piggyBac-derived vector. Insect Biochem Mol Biol. 2003 Apr;33(4):449–458. doi: 10.1016/s0965-1748(03)00009-2. [DOI] [PubMed] [Google Scholar]
- Tomita Masahiro, Munetsuna Hiroto, Sato Tsutomu, Adachi Takahiro, Hino Rika, Hayashi Masahiro, Shimizu Katsuhiko, Nakamura Namiko, Tamura Toshiki, Yoshizato Katsutoshi. Transgenic silkworms produce recombinant human type III procollagen in cocoons. Nat Biotechnol. 2002 Dec 16;21(1):52–56. doi: 10.1038/nbt771. [DOI] [PubMed] [Google Scholar]
- Tsien R. Y. The green fluorescent protein. Annu Rev Biochem. 1998;67:509–544. doi: 10.1146/annurev.biochem.67.1.509. [DOI] [PubMed] [Google Scholar]
- Ugarković D., Podnar M., Plohl M. Satellite DNA of the red flour beetle Tribolium castaneum--comparative study of satellites from the genus Tribolium. Mol Biol Evol. 1996 Oct;13(8):1059–1066. doi: 10.1093/oxfordjournals.molbev.a025668. [DOI] [PubMed] [Google Scholar]
- Vos J. C., De Baere I., Plasterk R. H. Transposase is the only nematode protein required for in vitro transposition of Tc1. Genes Dev. 1996 Mar 15;10(6):755–761. doi: 10.1101/gad.10.6.755. [DOI] [PubMed] [Google Scholar]
- Zagoraiou L., Drabek D., Alexaki S., Guy J. A., Klinakis A. G., Langeveld A., Skavdis G., Mamalaki C., Grosveld F., Savakis C. In vivo transposition of Minos, a Drosophila mobile element, in mammalian tissues. Proc Natl Acad Sci U S A. 2001 Sep 18;98(20):11474–11478. doi: 10.1073/pnas.201392398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang Hongjie, Shinmyo Yohei, Hirose Ayumi, Mito Taro, Inoue Yoshiko, Ohuchi Hideyo, Loukeris Thanasis G., Eggleston Paul, Noji Sumihare. Extrachromosomal transposition of the transposable element Minos in embryos of the cricket Gryllus bimaculatus. Dev Growth Differ. 2002 Oct;44(5):409–417. doi: 10.1046/j.1440-169x.2002.00654.x. [DOI] [PubMed] [Google Scholar]