Skip to main content
Genetics logoLink to Genetics
. 2004 Jun;167(2):559–567. doi: 10.1534/genetics.103.021196

Epistasis and its relationship to canalization in the RNA virus phi 6.

Christina L Burch 1, Lin Chao 1
PMCID: PMC1470902  PMID: 15238511

Abstract

Although deleterious mutations are believed to play a critical role in evolution, assessing their realized effect has been difficult. A key parameter governing the effect of deleterious mutations is the nature of epistasis, the interaction between the mutations. RNA viruses should provide one of the best systems for investigating the nature of epistasis because the high mutation rate allows a thorough investigation of mutational effects and interactions. Nonetheless, previous investigations of RNA viruses by S. Crotty and co-workers and by S. F. Elena have been unable to detect a significant effect of epistasis. Here we provide evidence that positive epistasis is characteristic of deleterious mutations in the RNA bacteriophage phi 6. We estimated the effects of deleterious mutations by performing mutation-accumulation experiments on five viral genotypes of decreasing fitness. We inferred positive epistasis because viral genotypes with low fitness were found to be less sensitive to deleterious mutations. We further examined environmental sensitivity in these genotypes and found that low-fitness genotypes were also less sensitive to environmental perturbations. Our results suggest that even random mutations impact the degree of canalization, the buffering of a phenotype against genetic and environmental perturbations. In addition, our results suggest that genetic and environmental canalization have the same developmental basis and finally that an understanding of the nature of epistasis may first require an understanding of the nature of canalization.

Full Text

The Full Text of this article is available as a PDF (108.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ancel L. W., Fontana W. Plasticity, evolvability, and modularity in RNA. J Exp Zool. 2000 Oct 15;288(3):242–283. doi: 10.1002/1097-010x(20001015)288:3<242::aid-jez5>3.0.co;2-o. [DOI] [PubMed] [Google Scholar]
  2. Barton N. H., Charlesworth B. Why sex and recombination? Science. 1998 Sep 25;281(5385):1986–1990. [PubMed] [Google Scholar]
  3. Bergman Aviv, Siegal Mark L. Evolutionary capacitance as a general feature of complex gene networks. Nature. 2003 Jul 31;424(6948):549–552. doi: 10.1038/nature01765. [DOI] [PubMed] [Google Scholar]
  4. Burch C. L., Chao L. Evolution by small steps and rugged landscapes in the RNA virus phi6. Genetics. 1999 Mar;151(3):921–927. doi: 10.1093/genetics/151.3.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chao L. Evolution of sex in RNA viruses. J Theor Biol. 1988 Jul 8;133(1):99–112. doi: 10.1016/s0022-5193(88)80027-4. [DOI] [PubMed] [Google Scholar]
  6. Chao L. Fitness of RNA virus decreased by Muller's ratchet. Nature. 1990 Nov 29;348(6300):454–455. doi: 10.1038/348454a0. [DOI] [PubMed] [Google Scholar]
  7. Chao L., Tran T. T., Tran T. T. The advantage of sex in the RNA virus phi6. Genetics. 1997 Nov;147(3):953–959. doi: 10.1093/genetics/147.3.953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chao Lin, Rang Camilla U., Wong Linda E. Distribution of spontaneous mutants and inferences about the replication mode of the RNA bacteriophage phi6. J Virol. 2002 Apr;76(7):3276–3281. doi: 10.1128/JVI.76.7.3276-3281.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Charlesworth B. The effect of synergistic epistasis on the inbreeding load. Genet Res. 1998 Feb;71(1):85–89. doi: 10.1017/s0016672398003140. [DOI] [PubMed] [Google Scholar]
  10. Crotty S., Cameron C. E., Andino R. RNA virus error catastrophe: direct molecular test by using ribavirin. Proc Natl Acad Sci U S A. 2001 May 22;98(12):6895–6900. doi: 10.1073/pnas.111085598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. DUN R. B., FRASER A. S. Selection for an invariant character; vibrissa number in the house mouse. Nature. 1958 Apr 5;181(4614):1018–1019. doi: 10.1038/1811018a0. [DOI] [PubMed] [Google Scholar]
  12. Elena S. F., Lenski R. E. Test of synergistic interactions among deleterious mutations in bacteria. Nature. 1997 Nov 27;390(6658):395–398. doi: 10.1038/37108. [DOI] [PubMed] [Google Scholar]
  13. Elena S. F. Little evidence for synergism among deleterious mutations in a nonsegmented RNA virus. J Mol Evol. 1999 Nov;49(5):703–707. doi: 10.1007/pl00000082. [DOI] [PubMed] [Google Scholar]
  14. Gibson G., Wagner G. Canalization in evolutionary genetics: a stabilizing theory? Bioessays. 2000 Apr;22(4):372–380. doi: 10.1002/(SICI)1521-1878(200004)22:4<372::AID-BIES7>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  15. Keightley P. D., Ohnishi O. EMS-induced polygenic mutation rates for nine quantitative characters in Drosophila melanogaster. Genetics. 1998 Feb;148(2):753–766. doi: 10.1093/genetics/148.2.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kibota T. T., Lynch M. Estimate of the genomic mutation rate deleterious to overall fitness in E. coli. Nature. 1996 Jun 20;381(6584):694–696. doi: 10.1038/381694a0. [DOI] [PubMed] [Google Scholar]
  17. Kondrashov A. S., Crow J. F. Haploidy or diploidy: which is better? Nature. 1991 May 23;351(6324):314–315. doi: 10.1038/351314a0. [DOI] [PubMed] [Google Scholar]
  18. Kondrashov A. S. Muller's ratchet under epistatic selection. Genetics. 1994 Apr;136(4):1469–1473. doi: 10.1093/genetics/136.4.1469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kondrashov A. S. Selection against harmful mutations in large sexual and asexual populations. Genet Res. 1982 Dec;40(3):325–332. doi: 10.1017/s0016672300019194. [DOI] [PubMed] [Google Scholar]
  20. Lenski R. E., Ofria C., Collier T. C., Adami C. Genome complexity, robustness and genetic interactions in digital organisms. Nature. 1999 Aug 12;400(6745):661–664. doi: 10.1038/23245. [DOI] [PubMed] [Google Scholar]
  21. Mindich L., Sinclair J. F., Levine D., Cohen J. Genetic studies of temperature-sensitive and nonsense mutants of bacteriophage phi6. Virology. 1976 Nov;75(1):218–223. doi: 10.1016/0042-6822(76)90020-9. [DOI] [PubMed] [Google Scholar]
  22. Mukai T. The Genetic Structure of Natural Populations of DROSOPHILA MELANOGASTER. VII Synergistic Interaction of Spontaneous Mutant Polygenes Controlling Viability. Genetics. 1969 Mar;61(3):749–761. doi: 10.1093/genetics/61.3.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Peters A. D., Keightley P. D. A test for epistasis among induced mutations in Caenorhabditis elegans. Genetics. 2000 Dec;156(4):1635–1647. doi: 10.1093/genetics/156.4.1635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Seager R. D., Ayala F. J. Chromosome interactions in Drosophila melanogaster. I. Viability studies. Genetics. 1982 Nov;102(3):467–483. doi: 10.1093/genetics/102.3.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Seager R. D., Ayala F. J., Marks R. W. Chromosome interactions in Drosophila melanogaster. II. Total fitness. Genetics. 1982 Nov;102(3):485–502. doi: 10.1093/genetics/102.3.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. TEBB G., THODAY J. M. Stability in development and relational balance of X-chromosomes in Drosophila melanogaster. Nature. 1954 Dec 11;174(4441):1109–1110. doi: 10.1038/1741109a0. [DOI] [PubMed] [Google Scholar]
  27. Vidaver A. K., Koski R. K., Van Etten J. L. Bacteriophage phi6: a Lipid-Containing Virus of Pseudomonas phaseolicola. J Virol. 1973 May;11(5):799–805. doi: 10.1128/jvi.11.5.799-805.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wagner A., Wagner G. P., Similion P. Epistasis can facilitate the evolution of reproductive isolation by peak shifts: a two-locus two-allele model. Genetics. 1994 Oct;138(2):533–545. doi: 10.1093/genetics/138.2.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Whitlock M. C., Bourguet D. Factors affecting the genetic load in Drosophila: synergistic epistasis and correlations among fitness components. Evolution. 2000 Oct;54(5):1654–1660. doi: 10.1111/j.0014-3820.2000.tb00709.x. [DOI] [PubMed] [Google Scholar]
  30. Zeyl C., DeVisser J. A. Estimates of the rate and distribution of fitness effects of spontaneous mutation in Saccharomyces cerevisiae. Genetics. 2001 Jan;157(1):53–61. doi: 10.1093/genetics/157.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. de Visser J. A., Hoekstra R. F., van den Ende H. An experimental test for synergistic epistasis and its application in Chlamydomonas. Genetics. 1997 Mar;145(3):815–819. doi: 10.1093/genetics/145.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES