Skip to main content
Genetics logoLink to Genetics
. 2004 Jun;167(2):967–975. doi: 10.1534/genetics.104.026286

A unified Markov chain Monte Carlo framework for mapping multiple quantitative trait loci.

Nengjun Yi 1
PMCID: PMC1470906  PMID: 15238545

Abstract

In this article, a unified Markov chain Monte Carlo (MCMC) framework is proposed to identify multiple quantitative trait loci (QTL) for complex traits in experimental designs, based on a composite space representation of the problem that has fixed dimension. The proposed unified approach includes the existing Bayesian QTL mapping methods using reversible jump MCMC algorithm as special cases. We also show that a variety of Bayesian variable selection methods using Gibbs sampling can be applied to the composite model space for mapping multiple QTL. The unified framework not only results in some new algorithms, but also gives useful insight into some of the important factors governing the performance of Gibbs sampling and reversible jump for mapping multiple QTL. Finally, we develop strategies to improve the performance of MCMC algorithms.

Full Text

The Full Text of this article is available as a PDF (110.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ball R. D. Bayesian methods for quantitative trait loci mapping based on model selection: approximate analysis using the Bayesian information criterion. Genetics. 2001 Nov;159(3):1351–1364. doi: 10.1093/genetics/159.3.1351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Heath S. C. Markov chain Monte Carlo segregation and linkage analysis for oligogenic models. Am J Hum Genet. 1997 Sep;61(3):748–760. doi: 10.1086/515506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Jiang C., Zeng Z. B. Mapping quantitative trait loci with dominant and missing markers in various crosses from two inbred lines. Genetica. 1997;101(1):47–58. doi: 10.1023/a:1018394410659. [DOI] [PubMed] [Google Scholar]
  4. Lee J. K., Thomas D. C. Performance of Markov chain-Monte Carlo approaches for mapping genes in oligogenic models with an unknown number of loci. Am J Hum Genet. 2000 Oct 13;67(5):1232–1250. doi: 10.1016/s0002-9297(07)62953-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Sillanpä M. J., Arjas E. Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data. Genetics. 1998 Mar;148(3):1373–1388. doi: 10.1093/genetics/148.3.1373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Sillanpä M. J., Arjas E. Bayesian mapping of multiple quantitative trait loci from incomplete outbred offspring data. Genetics. 1999 Apr;151(4):1605–1619. doi: 10.1093/genetics/151.4.1605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Sillanpä Mikko J., Corander Jukka. Model choice in gene mapping: what and why. Trends Genet. 2002 Jun;18(6):301–307. doi: 10.1016/S0168-9525(02)02688-4. [DOI] [PubMed] [Google Scholar]
  8. Uimari P., Hoeschele I. Mapping-linked quantitative trait loci using Bayesian analysis and Markov chain Monte Carlo algorithms. Genetics. 1997 Jun;146(2):735–743. doi: 10.1093/genetics/146.2.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Uimari P., Sillanpä M. J. Bayesian oligogenic analysis of quantitative and qualitative traits in general pedigrees. Genet Epidemiol. 2001 Nov;21(3):224–242. doi: 10.1002/gepi.1031. [DOI] [PubMed] [Google Scholar]
  10. Xu S., Yi N. Mixed model analysis of quantitative trait loci. Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14542–14547. doi: 10.1073/pnas.250235197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Xu Shizhong. Estimating polygenic effects using markers of the entire genome. Genetics. 2003 Feb;163(2):789–801. doi: 10.1093/genetics/163.2.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Yi N., Xu S. Bayesian mapping of quantitative trait loci for complex binary traits. Genetics. 2000 Jul;155(3):1391–1403. doi: 10.1093/genetics/155.3.1391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Yi N., Xu S. Bayesian mapping of quantitative trait loci under complicated mating designs. Genetics. 2001 Apr;157(4):1759–1771. doi: 10.1093/genetics/157.4.1759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Yi Nengjun, George Varghese, Allison David B. Stochastic search variable selection for identifying multiple quantitative trait loci. Genetics. 2003 Jul;164(3):1129–1138. doi: 10.1093/genetics/164.3.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Yi Nengjun, Xu Shizhong, Allison David B. Bayesian model choice and search strategies for mapping interacting quantitative trait Loci. Genetics. 2003 Oct;165(2):867–883. doi: 10.1093/genetics/165.2.867. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES