Skip to main content
Genetics logoLink to Genetics
. 2004 Jun;167(2):783–796. doi: 10.1534/genetics.103.024992

Drosophila Costal1 mutations are alleles of protein kinase A that modulate hedgehog signaling.

Lara S Collier 1, Kaye Suyama 1, Joseph H Anderson 1, Matthew P Scott 1
PMCID: PMC1470909  PMID: 15238528

Abstract

Hedgehog (Hh) signaling is crucial for the development of many tissues, and altered Hh signal transduction can result in cancer. The Drosophila Costal1 (Cos1) and costal2 (cos2) genes have been implicated in Hh signaling. cos2 encodes a kinesin-related molecule, one component of a cytoplasmic complex of Hh signal transducers. Mutations in Cos1 enhance loss-of-function cos2 mutations, but the molecular nature of Cos1 has been unknown. We found that previously identified alleles of Cos1 actually map to two separate loci. Four alleles of Cos1 appear to be dominant-negative mutations of a catalytic subunit of protein kinase A (pka-C1) and the fifth allele, Cos1(A1), is a gain-of-function allele of the PKA regulatory subunit pka-RII. PKA-RII protein levels are higher in Cos1(A1) mutants than in wild type. Overexpression of wild-type pka-RII phenocopies Cos1 mutants. PKA activity is aberrant in Cos1(A1) mutants. PKA-RII is uniformly overproduced in the wing imaginal disc in Cos1(A1) mutants, but only certain cells respond by activating the transcription factor Ci and Hh target gene transcription. This work shows that overexpression of a wild-type regulatory subunit of PKA is sufficient to activate Hh target gene transcription.

Full Text

The Full Text of this article is available as a PDF (797.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amieux P. S., Cummings D. E., Motamed K., Brandon E. P., Wailes L. A., Le K., Idzerda R. L., McKnight G. S. Compensatory regulation of RIalpha protein levels in protein kinase A mutant mice. J Biol Chem. 1997 Feb 14;272(7):3993–3998. doi: 10.1074/jbc.272.7.3993. [DOI] [PubMed] [Google Scholar]
  2. Aza-Blanc P., Ramírez-Weber F. A., Laget M. P., Schwartz C., Kornberg T. B. Proteolysis that is inhibited by hedgehog targets Cubitus interruptus protein to the nucleus and converts it to a repressor. Cell. 1997 Jun 27;89(7):1043–1053. doi: 10.1016/s0092-8674(00)80292-5. [DOI] [PubMed] [Google Scholar]
  3. Basler K., Struhl G. Compartment boundaries and the control of Drosophila limb pattern by hedgehog protein. Nature. 1994 Mar 17;368(6468):208–214. doi: 10.1038/368208a0. [DOI] [PubMed] [Google Scholar]
  4. Berman David M., Karhadkar Sunil S., Maitra Anirban, Montes De Oca Rocio, Gerstenblith Meg R., Briggs Kimberly, Parker Antony R., Shimada Yutaka, Eshleman James R., Watkins D. Neil. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature. 2003 Sep 14;425(6960):846–851. doi: 10.1038/nature01972. [DOI] [PubMed] [Google Scholar]
  5. Blackman R. K., Sanicola M., Raftery L. A., Gillevet T., Gelbart W. M. An extensive 3' cis-regulatory region directs the imaginal disk expression of decapentaplegic, a member of the TGF-beta family in Drosophila. Development. 1991 Mar;111(3):657–666. doi: 10.1242/dev.111.3.657. [DOI] [PubMed] [Google Scholar]
  6. Brandon E. P., Logue S. F., Adams M. R., Qi M., Sullivan S. P., Matsumoto A. M., Dorsa D. M., Wehner J. M., McKnight G. S., Idzerda R. L. Defective motor behavior and neural gene expression in RIIbeta-protein kinase A mutant mice. J Neurosci. 1998 May 15;18(10):3639–3649. doi: 10.1523/JNEUROSCI.18-10-03639.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Capdevila J., Guerrero I. Targeted expression of the signaling molecule decapentaplegic induces pattern duplications and growth alterations in Drosophila wings. EMBO J. 1994 Oct 3;13(19):4459–4468. doi: 10.1002/j.1460-2075.1994.tb06768.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen Y., Cardinaux J. R., Goodman R. H., Smolik S. M. Mutants of cubitus interruptus that are independent of PKA regulation are independent of hedgehog signaling. Development. 1999 Aug;126(16):3607–3616. doi: 10.1242/dev.126.16.3607. [DOI] [PubMed] [Google Scholar]
  9. Foster J. L., Guttman J. J., Hall L. M., Rosen O. M. Drosophila cAMP-dependent protein kinase. J Biol Chem. 1984 Nov 10;259(21):13049–13055. [PubMed] [Google Scholar]
  10. Furlong E. E., Profitt D., Scott M. P. Automated sorting of live transgenic embryos. Nat Biotechnol. 2001 Feb;19(2):153–156. doi: 10.1038/84422. [DOI] [PubMed] [Google Scholar]
  11. Glise Bruno, Jones D. Leanne, Ingham Philip W. Notch and Wingless modulate the response of cells to Hedgehog signalling in the Drosophila wing. Dev Biol. 2002 Aug 1;248(1):93–106. doi: 10.1006/dbio.2002.0720. [DOI] [PubMed] [Google Scholar]
  12. Goodrich L. V., Milenković L., Higgins K. M., Scott M. P. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science. 1997 Aug 22;277(5329):1109–1113. doi: 10.1126/science.277.5329.1109. [DOI] [PubMed] [Google Scholar]
  13. Grau Y., Simpson P. The segment polarity gene costal-2 in Drosophila. I. The organization of both primary and secondary embryonic fields may be affected. Dev Biol. 1987 Jul;122(1):186–200. doi: 10.1016/0012-1606(87)90344-7. [DOI] [PubMed] [Google Scholar]
  14. Hahn H., Wicking C., Zaphiropoulous P. G., Gailani M. R., Shanley S., Chidambaram A., Vorechovsky I., Holmberg E., Unden A. B., Gillies S. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell. 1996 Jun 14;85(6):841–851. doi: 10.1016/s0092-8674(00)81268-4. [DOI] [PubMed] [Google Scholar]
  15. Hanks S. K., Quinn A. M., Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science. 1988 Jul 1;241(4861):42–52. doi: 10.1126/science.3291115. [DOI] [PubMed] [Google Scholar]
  16. Harrison D. A., Perrimon N. Simple and efficient generation of marked clones in Drosophila. Curr Biol. 1993 Jul 1;3(7):424–433. doi: 10.1016/0960-9822(93)90349-s. [DOI] [PubMed] [Google Scholar]
  17. Hooper J. E., Scott M. P. The Drosophila patched gene encodes a putative membrane protein required for segmental patterning. Cell. 1989 Nov 17;59(4):751–765. doi: 10.1016/0092-8674(89)90021-4. [DOI] [PubMed] [Google Scholar]
  18. Jiang J., Struhl G. Protein kinase A and hedgehog signaling in Drosophila limb development. Cell. 1995 Feb 24;80(4):563–572. doi: 10.1016/0092-8674(95)90510-3. [DOI] [PubMed] [Google Scholar]
  19. Jiang J., Struhl G. Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature. 1998 Jan 29;391(6666):493–496. doi: 10.1038/35154. [DOI] [PubMed] [Google Scholar]
  20. Johnson R. L., Grenier J. K., Scott M. P. patched overexpression alters wing disc size and pattern: transcriptional and post-transcriptional effects on hedgehog targets. Development. 1995 Dec;121(12):4161–4170. doi: 10.1242/dev.121.12.4161. [DOI] [PubMed] [Google Scholar]
  21. Johnson R. L., Rothman A. L., Xie J., Goodrich L. V., Bare J. W., Bonifas J. M., Quinn A. G., Myers R. M., Cox D. R., Epstein E. H., Jr Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science. 1996 Jun 14;272(5268):1668–1671. doi: 10.1126/science.272.5268.1668. [DOI] [PubMed] [Google Scholar]
  22. Kalderon D., Rubin G. M. Isolation and characterization of Drosophila cAMP-dependent protein kinase genes. Genes Dev. 1988 Dec;2(12A):1539–1556. doi: 10.1101/gad.2.12a.1539. [DOI] [PubMed] [Google Scholar]
  23. Kiger J. A., Jr, Eklund J. L., Younger S. H., O'Kane C. J. Transgenic inhibitors identify two roles for protein kinase A in Drosophila development. Genetics. 1999 May;152(1):281–290. doi: 10.1093/genetics/152.1.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kiger J. A., Jr, O'Shea C. Genetic evidence for a protein kinase A/cubitus interruptus complex that facilitates processing of cubitus interruptus in Drosophila. Genetics. 2001 Jul;158(3):1157–1166. doi: 10.1093/genetics/158.3.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lepage T., Cohen S. M., Diaz-Benjumea F. J., Parkhurst S. M. Signal transduction by cAMP-dependent protein kinase A in Drosophila limb patterning. Nature. 1995 Feb 23;373(6516):711–715. doi: 10.1038/373711a0. [DOI] [PubMed] [Google Scholar]
  26. Li W., Ohlmeyer J. T., Lane M. E., Kalderon D. Function of protein kinase A in hedgehog signal transduction and Drosophila imaginal disc development. Cell. 1995 Feb 24;80(4):553–562. doi: 10.1016/0092-8674(95)90509-x. [DOI] [PubMed] [Google Scholar]
  27. Méthot N., Basler K. Hedgehog controls limb development by regulating the activities of distinct transcriptional activator and repressor forms of Cubitus interruptus. Cell. 1999 Mar 19;96(6):819–831. doi: 10.1016/s0092-8674(00)80592-9. [DOI] [PubMed] [Google Scholar]
  28. Nellen D., Burke R., Struhl G., Basler K. Direct and long-range action of a DPP morphogen gradient. Cell. 1996 May 3;85(3):357–368. doi: 10.1016/s0092-8674(00)81114-9. [DOI] [PubMed] [Google Scholar]
  29. Oro A. E., Higgins K. M., Hu Z., Bonifas J. M., Epstein E. H., Jr, Scott M. P. Basal cell carcinomas in mice overexpressing sonic hedgehog. Science. 1997 May 2;276(5313):817–821. doi: 10.1126/science.276.5313.817. [DOI] [PubMed] [Google Scholar]
  30. Park S. K., Sedore S. A., Cronmiller C., Hirsh J. Type II cAMP-dependent protein kinase-deficient Drosophila are viable but show developmental, circadian, and drug response phenotypes. J Biol Chem. 2000 Jul 7;275(27):20588–20596. doi: 10.1074/jbc.M002460200. [DOI] [PubMed] [Google Scholar]
  31. Raffel C., Jenkins R. B., Frederick L., Hebrink D., Alderete B., Fults D. W., James C. D. Sporadic medulloblastomas contain PTCH mutations. Cancer Res. 1997 Mar 1;57(5):842–845. [PubMed] [Google Scholar]
  32. Rangel-Aldao R., Rosen O. M. Mechanism of self-phosphorylation of adenosine 3':5'-monophosphate-dependent protein kinase from bovine cardiac muscle. J Biol Chem. 1976 Dec 10;251(23):7526–7529. [PubMed] [Google Scholar]
  33. Robbins D. J., Nybakken K. E., Kobayashi R., Sisson J. C., Bishop J. M., Thérond P. P. Hedgehog elicits signal transduction by means of a large complex containing the kinesin-related protein costal2. Cell. 1997 Jul 25;90(2):225–234. doi: 10.1016/s0092-8674(00)80331-1. [DOI] [PubMed] [Google Scholar]
  34. Rørth P., Szabo K., Bailey A., Laverty T., Rehm J., Rubin G. M., Weigmann K., Milán M., Benes V., Ansorge W. Systematic gain-of-function genetics in Drosophila. Development. 1998 Mar;125(6):1049–1057. doi: 10.1242/dev.125.6.1049. [DOI] [PubMed] [Google Scholar]
  35. Scott J. D., McCartney S. Localization of A-kinase through anchoring proteins. Mol Endocrinol. 1994 Jan;8(1):5–11. doi: 10.1210/mend.8.1.8152430. [DOI] [PubMed] [Google Scholar]
  36. Sisson J. C., Ho K. S., Suyama K., Scott M. P. Costal2, a novel kinesin-related protein in the Hedgehog signaling pathway. Cell. 1997 Jul 25;90(2):235–245. doi: 10.1016/s0092-8674(00)80332-3. [DOI] [PubMed] [Google Scholar]
  37. Skoulakis E. M., Kalderon D., Davis R. L. Preferential expression in mushroom bodies of the catalytic subunit of protein kinase A and its role in learning and memory. Neuron. 1993 Aug;11(2):197–208. doi: 10.1016/0896-6273(93)90178-t. [DOI] [PubMed] [Google Scholar]
  38. Strutt D. I., Wiersdorff V., Mlodzik M. Regulation of furrow progression in the Drosophila eye by cAMP-dependent protein kinase A. Nature. 1995 Feb 23;373(6516):705–709. doi: 10.1038/373705a0. [DOI] [PubMed] [Google Scholar]
  39. Taipale J., Beachy P. A. The Hedgehog and Wnt signalling pathways in cancer. Nature. 2001 May 17;411(6835):349–354. doi: 10.1038/35077219. [DOI] [PubMed] [Google Scholar]
  40. Thayer Sarah P., di Magliano Marina Pasca, Heiser Patrick W., Nielsen Corinne M., Roberts Drucilla J., Lauwers Gregory Y., Qi Yan Ping, Gysin Stephan, Fernández-del Castillo Carlos, Yajnik Vijay. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature. 2003 Sep 14;425(6960):851–856. doi: 10.1038/nature02009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wang G., Wang B., Jiang J. Protein kinase A antagonizes Hedgehog signaling by regulating both the activator and repressor forms of Cubitus interruptus. Genes Dev. 1999 Nov 1;13(21):2828–2837. doi: 10.1101/gad.13.21.2828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wang Q. T., Holmgren R. A. Nuclear import of cubitus interruptus is regulated by hedgehog via a mechanism distinct from Ci stabilization and Ci activation. Development. 2000 Jul;127(14):3131–3139. doi: 10.1242/dev.127.14.3131. [DOI] [PubMed] [Google Scholar]
  44. Zecca M., Basler K., Struhl G. Sequential organizing activities of engrailed, hedgehog and decapentaplegic in the Drosophila wing. Development. 1995 Aug;121(8):2265–2278. doi: 10.1242/dev.121.8.2265. [DOI] [PubMed] [Google Scholar]
  45. von Grünberg HH, Jain KP, Elliott RJ. Optical properties of quantum wires: Fermi-edge singularity exponents and the low-density limit. Phys Rev B Condens Matter. 1996 Jul 15;54(3):1987–1997. doi: 10.1103/physrevb.54.1987. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES