Skip to main content
Genetics logoLink to Genetics
. 2004 Jun;167(2):797–813. doi: 10.1534/genetics.104.026658

The DrosDel collection: a set of P-element insertions for generating custom chromosomal aberrations in Drosophila melanogaster.

Edward Ryder 1, Fiona Blows 1, Michael Ashburner 1, Rosa Bautista-Llacer 1, Darin Coulson 1, Jenny Drummond 1, Jane Webster 1, David Gubb 1, Nicola Gunton 1, Glynnis Johnson 1, Cahir J O'Kane 1, David Huen 1, Punita Sharma 1, Zoltan Asztalos 1, Heiko Baisch 1, Janet Schulze 1, Maria Kube 1, Kathrin Kittlaus 1, Gunter Reuter 1, Peter Maroy 1, Janos Szidonya 1, Asa Rasmuson-Lestander 1, Karin Ekström 1, Barry Dickson 1, Christoph Hugentobler 1, Hugo Stocker 1, Ernst Hafen 1, Jean Antoine Lepesant 1, Gert Pflugfelder 1, Martin Heisenberg 1, Bernard Mechler 1, Florenci Serras 1, Montserrat Corominas 1, Stephan Schneuwly 1, Thomas Preat 1, John Roote 1, Steven Russell 1
PMCID: PMC1470913  PMID: 15238529

Abstract

We describe a collection of P-element insertions that have considerable utility for generating custom chromosomal aberrations in Drosophila melanogaster. We have mobilized a pair of engineered P elements, p[RS3] and p[RS5], to collect 3243 lines unambiguously mapped to the Drosophila genome sequence. The collection contains, on average, an element every 35 kb. We demonstrate the utility of the collection for generating custom chromosomal deletions that have their end points mapped, with base-pair resolution, to the genome sequence. The collection was generated in an isogenic strain, thus affording a uniform background for screens where sensitivity to genetic background is high. The entire collection, along with a computational and genetic toolbox for designing and generating custom deletions, is publicly available. Using the collection it is theoretically possible to generate >12,000 deletions between 1 bp and 1 Mb in size by simple eye color selection. In addition, a further 37,000 deletions, selectable by molecular screening, may be generated. We are now using the collection to generate a second-generation deficiency kit that is precisely mapped to the genome sequence.

Full Text

The Full Text of this article is available as a PDF (294.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. D., Celniker S. E., Holt R. A., Evans C. A., Gocayne J. D., Amanatides P. G., Scherer S. E., Li P. W., Hoskins R. A., Galle R. F. The genome sequence of Drosophila melanogaster. Science. 2000 Mar 24;287(5461):2185–2195. doi: 10.1126/science.287.5461.2185. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Ashburner M., Misra S., Roote J., Lewis S. E., Blazej R., Davis T., Doyle C., Galle R., George R., Harris N. An exploration of the sequence of a 2.9-Mb region of the genome of Drosophila melanogaster: the Adh region. Genetics. 1999 Sep;153(1):179–219. doi: 10.1093/genetics/153.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bridges C B. Non-Disjunction as Proof of the Chromosome Theory of Heredity. Genetics. 1916 Jan;1(1):1–52. doi: 10.1093/genetics/1.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Celniker Susan E., Wheeler David A., Kronmiller Brent, Carlson Joseph W., Halpern Aaron, Patel Sandeep, Adams Mark, Champe Mark, Dugan Shannon P., Frise Erwin. Finishing a whole-genome shotgun: release 3 of the Drosophila melanogaster euchromatic genome sequence. Genome Biol. 2002 Dec 23;3(12):RESEARCH0079–RESEARCH0079. doi: 10.1186/gb-2002-3-12-research0079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dura J. M., Preat T., Tully T. Identification of linotte, a new gene affecting learning and memory in Drosophila melanogaster. J Neurogenet. 1993 Aug;9(1):1–14. doi: 10.3109/01677069309167272. [DOI] [PubMed] [Google Scholar]
  7. FlyBase Consortium The FlyBase database of the Drosophila genome projects and community literature. Nucleic Acids Res. 2003 Jan 1;31(1):172–175. doi: 10.1093/nar/gkg094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Golic K. G., Golic M. M. Engineering the Drosophila genome: chromosome rearrangements by design. Genetics. 1996 Dec;144(4):1693–1711. doi: 10.1093/genetics/144.4.1693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gray Y. H., Tanaka M. M., Sved J. A. P-element-induced recombination in Drosophila melanogaster: hybrid element insertion. Genetics. 1996 Dec;144(4):1601–1610. doi: 10.1093/genetics/144.4.1601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hamblen M., Zehring W. A., Kyriacou C. P., Reddy P., Yu Q., Wheeler D. A., Zwiebel L. J., Konopka R. J., Rosbash M., Hall J. C. Germ-line transformation involving DNA from the period locus in Drosophila melanogaster: overlapping genomic fragments that restore circadian and ultradian rhythmicity to per0 and per- mutants. J Neurogenet. 1986 Sep;3(5):249–291. doi: 10.3109/01677068609106855. [DOI] [PubMed] [Google Scholar]
  11. Huet François, Lu Jeffrey T., Myrick Kyl V., Baugh L. Ryan, Crosby Madeline A., Gelbart William M. A deletion-generator compound element allows deletion saturation analysis for genomewide phenotypic annotation. Proc Natl Acad Sci U S A. 2002 Jul 2;99(15):9948–9953. doi: 10.1073/pnas.142310099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jin W., Riley R. M., Wolfinger R. D., White K. P., Passador-Gurgel G., Gibson G. The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster. Nat Genet. 2001 Dec;29(4):389–395. doi: 10.1038/ng766. [DOI] [PubMed] [Google Scholar]
  13. Kaiser K., Goodwin S. F. "Site-selected" transposon mutagenesis of Drosophila. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1686–1690. doi: 10.1073/pnas.87.5.1686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lambertsson A. The minute genes in Drosophila and their molecular functions. Adv Genet. 1998;38:69–134. doi: 10.1016/s0065-2660(08)60142-x. [DOI] [PubMed] [Google Scholar]
  15. Lindsley D. L., Sandler L., Baker B. S., Carpenter A. T., Denell R. E., Hall J. C., Jacobs P. A., Miklos G. L., Davis B. K., Gethmann R. C. Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics. 1972 May;71(1):157–184. doi: 10.1093/genetics/71.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Meiklejohn Colin D., Parsch John, Ranz José M., Hartl Daniel L. Rapid evolution of male-biased gene expression in Drosophila. Proc Natl Acad Sci U S A. 2003 Aug 7;100(17):9894–9899. doi: 10.1073/pnas.1630690100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Merrill P. T., Sweeton D., Wieschaus E. Requirements for autosomal gene activity during precellular stages of Drosophila melanogaster. Development. 1988 Nov;104(3):495–509. doi: 10.1242/dev.104.3.495. [DOI] [PubMed] [Google Scholar]
  18. Mohr Stephanie E., Gelbart William M. Using the P[wHy] hybrid transposable element to disrupt genes in region 54D-55B in Drosophila melanogaster. Genetics. 2002 Sep;162(1):165–176. doi: 10.1093/genetics/162.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mullins M. C., Rio D. C., Rubin G. M. cis-acting DNA sequence requirements for P-element transposition. Genes Dev. 1989 May;3(5):729–738. doi: 10.1101/gad.3.5.729. [DOI] [PubMed] [Google Scholar]
  20. Parks Annette L., Cook Kevin R., Belvin Marcia, Dompe Nicholas A., Fawcett Robert, Huppert Kari, Tan Lory R., Winter Christopher G., Bogart Kevin P., Deal Jennifer E. Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nat Genet. 2004 Feb 22;36(3):288–292. doi: 10.1038/ng1312. [DOI] [PubMed] [Google Scholar]
  21. Pascual A., Préat T. Localization of long-term memory within the Drosophila mushroom body. Science. 2001 Nov 2;294(5544):1115–1117. doi: 10.1126/science.1064200. [DOI] [PubMed] [Google Scholar]
  22. Rubin G. M., Spradling A. C. Vectors for P element-mediated gene transfer in Drosophila. Nucleic Acids Res. 1983 Sep 24;11(18):6341–6351. doi: 10.1093/nar/11.18.6341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schultz J. The Minute Reaction in the Development of DROSOPHILA MELANOGASTER. Genetics. 1929 Jul;14(4):366–419. doi: 10.1093/genetics/14.4.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Spradling A. C., Stern D., Beaton A., Rhem E. J., Laverty T., Mozden N., Misra S., Rubin G. M. The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes. Genetics. 1999 Sep;153(1):135–177. doi: 10.1093/genetics/153.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. St Johnston Daniel. The art and design of genetic screens: Drosophila melanogaster. Nat Rev Genet. 2002 Mar;3(3):176–188. doi: 10.1038/nrg751. [DOI] [PubMed] [Google Scholar]
  26. Tully T., Quinn W. G. Classical conditioning and retention in normal and mutant Drosophila melanogaster. J Comp Physiol A. 1985 Sep;157(2):263–277. doi: 10.1007/BF01350033. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES