Skip to main content
Genetics logoLink to Genetics
. 2004 Jun;167(2):835–850. doi: 10.1534/genetics.103.026187

Evidence that the large noncoding sequence is the main control region of maternally and paternally transmitted mitochondrial genomes of the marine mussel (Mytilus spp.).

Liqin Cao 1, Ellen Kenchington 1, Eleftherios Zouros 1, George C Rodakis 1
PMCID: PMC1470915  PMID: 15238532

Abstract

Both the maternal (F-type) and paternal (M-type) mitochondrial genomes of the Mytilus species complex M. edulis/galloprovincialis contain a noncoding sequence between the l-rRNA and the tRNA(Tyr) genes, here called the large unassigned region (LUR). The LUR, which is shorter in M genomes, is capable of forming secondary structures and contains motifs of significant sequence similarity with elements known to have specific functions in the sea urchin and the mammalian control region. Such features are not present in other noncoding regions of the F or M Mytilus mtDNA. The LUR can be divided on the basis of indels and nucleotide variation in three domains, which is reminiscent of the tripartite structure of the mammalian control region. These features suggest that the LUR is the main control region of the Mytilus mitochondrial genome. The middle domain has diverged by only 1.5% between F and M genomes, while the average divergence over the whole molecule is approximately 20%. In contrast, the first domain is among the most divergent parts of the genome. This suggests that different parts of the LUR are under different selection constraints that are also different from those acting on the coding parts of the molecule.

Full Text

The Full Text of this article is available as a PDF (329.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews R. M., Kubacka I., Chinnery P. F., Lightowlers R. N., Turnbull D. M., Howell N. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet. 1999 Oct;23(2):147–147. doi: 10.1038/13779. [DOI] [PubMed] [Google Scholar]
  2. Boore J. L. Animal mitochondrial genomes. Nucleic Acids Res. 1999 Apr 15;27(8):1767–1780. doi: 10.1093/nar/27.8.1767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown G. G., Gadaleta G., Pepe G., Saccone C., Sbisà E. Structural conservation and variation in the D-loop-containing region of vertebrate mitochondrial DNA. J Mol Biol. 1986 Dec 5;192(3):503–511. doi: 10.1016/0022-2836(86)90272-x. [DOI] [PubMed] [Google Scholar]
  4. Burzyński Artur, Zbawicka Małgorzata, Skibinski David O. F., Wenne Roman. Evidence for recombination of mtDNA in the marine mussel Mytilus trossulus from the Baltic. Mol Biol Evol. 2003 Mar;20(3):388–392. doi: 10.1093/molbev/msg058. [DOI] [PubMed] [Google Scholar]
  5. Cantatore P., Roberti M., Loguercio Polosa P., Mustich A., Gadaleta M. N. Mapping and characterization of Paracentrotus lividus mitochondrial transcripts: multiple and overlapping transcription units. Curr Genet. 1990 Mar;17(3):235–245. doi: 10.1007/BF00312615. [DOI] [PubMed] [Google Scholar]
  6. Cantatore P., Roberti M., Rainaldi G., Gadaleta M. N., Saccone C. The complete nucleotide sequence, gene organization, and genetic code of the mitochondrial genome of Paracentrotus lividus. J Biol Chem. 1989 Jul 5;264(19):10965–10975. [PubMed] [Google Scholar]
  7. Chang D. D., Clayton D. A. Priming of human mitochondrial DNA replication occurs at the light-strand promoter. Proc Natl Acad Sci U S A. 1985 Jan;82(2):351–355. doi: 10.1073/pnas.82.2.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clary D. O., Wolstenholme D. R. Drosophila mitochondrial DNA: conserved sequences in the A + T-rich region and supporting evidence for a secondary structure model of the small ribosomal RNA. J Mol Evol. 1987;25(2):116–125. doi: 10.1007/BF02101753. [DOI] [PubMed] [Google Scholar]
  9. Clary D. O., Wolstenholme D. R. The mitochondrial DNA molecular of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol. 1985;22(3):252–271. doi: 10.1007/BF02099755. [DOI] [PubMed] [Google Scholar]
  10. Clayton D. A. Transcription and replication of mitochondrial DNA. Hum Reprod. 2000 Jul;15 (Suppl 2):11–17. doi: 10.1093/humrep/15.suppl_2.11. [DOI] [PubMed] [Google Scholar]
  11. Delport Wayne, Ferguson J. Willem H., Bloomer Paulette. Characterization and evolution of the mitochondrial DNA control region in hornbills (Bucerotiformes). J Mol Evol. 2002 Jun;54(6):794–806. doi: 10.1007/s00239-001-0083-0. [DOI] [PubMed] [Google Scholar]
  12. Doda J. N., Wright C. T., Clayton D. A. Elongation of displacement-loop strands in human and mouse mitochondrial DNA is arrested near specific template sequences. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6116–6120. doi: 10.1073/pnas.78.10.6116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Elliott D. J., Jacobs H. T. Mutually exclusive synthetic pathways for sea urchin mitochondrial rRNA and mRNA. Mol Cell Biol. 1989 Mar;9(3):1069–1082. doi: 10.1128/mcb.9.3.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fernandez-Silva P., Polosa P. L., Roberti M., Di Ponzio B., Gadaleta M. N., Montoya J., Cantatore P. Sea urchin mtDBP is a two-faced transcription termination factor with a biased polarity depending on the RNA polymerase. Nucleic Acids Res. 2001 Nov 15;29(22):4736–4743. doi: 10.1093/nar/29.22.4736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fisher R. P., Topper J. N., Clayton D. A. Promoter selection in human mitochondria involves binding of a transcription factor to orientation-independent upstream regulatory elements. Cell. 1987 Jul 17;50(2):247–258. doi: 10.1016/0092-8674(87)90220-0. [DOI] [PubMed] [Google Scholar]
  16. Goddard J. M., Wolstenholme D. R. Origin and direction of replication in mitochondrial DNA molecules from the genus Drosophila. Nucleic Acids Res. 1980 Feb 25;8(4):741–757. [PMC free article] [PubMed] [Google Scholar]
  17. Goss P. J., Lewontin R. C. Detecting heterogeneity of substitution along DNA and protein sequences. Genetics. 1996 May;143(1):589–602. doi: 10.1093/genetics/143.1.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hatzoglou E., Rodakis G. C., Lecanidou R. Complete sequence and gene organization of the mitochondrial genome of the land snail Albinaria coerulea. Genetics. 1995 Aug;140(4):1353–1366. doi: 10.1093/genetics/140.4.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hoeh W. R., Stewart D. T., Saavedra C., Sutherland B. W., Zouros E. Phylogenetic evidence for role-reversals of gender-associated mitochondrial DNA in Mytilus (Bivalvia: Mytilidae). Mol Biol Evol. 1997 Sep;14(9):959–967. doi: 10.1093/oxfordjournals.molbev.a025839. [DOI] [PubMed] [Google Scholar]
  20. Hoeh W. R., Stewart D. T., Sutherland B. W., Zouros E. Cytochrome c oxidase sequence comparisons suggest an unusually high rate of mitochondrial DNA evolution in Mytilus (Mollusca: Bivalvia) Mol Biol Evol. 1996 Feb;13(2):418–421. doi: 10.1093/oxfordjournals.molbev.a025600. [DOI] [PubMed] [Google Scholar]
  21. Hoffmann R. J., Boore J. L., Brown W. M. A novel mitochondrial genome organization for the blue mussel, Mytilus edulis. Genetics. 1992 Jun;131(2):397–412. doi: 10.1093/genetics/131.2.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jacobs H. T., Elliott D. J., Math V. B., Farquharson A. Nucleotide sequence and gene organization of sea urchin mitochondrial DNA. J Mol Biol. 1988 Jul 20;202(2):185–217. doi: 10.1016/0022-2836(88)90452-4. [DOI] [PubMed] [Google Scholar]
  23. Jacobs H. T., Herbert E. R., Rankine J. Sea urchin egg mitochondrial DNA contains a short displacement loop (D-loop) in the replication origin region. Nucleic Acids Res. 1989 Nov 25;17(22):8949–8965. doi: 10.1093/nar/17.22.8949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kumar S., Tamura K., Jakobsen I. B., Nei M. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics. 2001 Dec;17(12):1244–1245. doi: 10.1093/bioinformatics/17.12.1244. [DOI] [PubMed] [Google Scholar]
  25. Ladoukakis E. D., Saavedra C., Magoulas A., Zouros E. Mitochondrial DNA variation in a species with two mitochondrial genomes: the case of Mytilus galloprovincialis from the Atlantic, the Mediterranean and the Black Sea. Mol Ecol. 2002 Apr;11(4):755–769. doi: 10.1046/j.1365-294x.2002.01473.x. [DOI] [PubMed] [Google Scholar]
  26. Levinson G., Gutman G. A. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol. 1987 May;4(3):203–221. doi: 10.1093/oxfordjournals.molbev.a040442. [DOI] [PubMed] [Google Scholar]
  27. Lewis D. L., Farr C. L., Farquhar A. L., Kaguni L. S. Sequence, organization, and evolution of the A+T region of Drosophila melanogaster mitochondrial DNA. Mol Biol Evol. 1994 May;11(3):523–538. doi: 10.1093/oxfordjournals.molbev.a040132. [DOI] [PubMed] [Google Scholar]
  28. Loguercio Polosa P., Roberti M., Musicco C., Gadaleta M. N., Quagliariello E., Cantatore P. Cloning and characterisation of mtDBP, a DNA-binding protein which binds two distinct regions of sea urchin mitochondrial DNA. Nucleic Acids Res. 1999 Apr 15;27(8):1890–1899. doi: 10.1093/nar/27.8.1890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Marshall H. D., Baker A. J. Structural conservation and variation in the mitochondrial control region of fringilline finches (Fringilla spp.) and the greenfinch (Carduelis chloris). Mol Biol Evol. 1997 Feb;14(2):173–184. doi: 10.1093/oxfordjournals.molbev.a025750. [DOI] [PubMed] [Google Scholar]
  30. Mayhook A. G., Rinaldi A. M., Jacobs H. T. Replication origins and pause sites in sea urchin mitochondrial DNA. Proc Biol Sci. 1992 Apr 22;248(1321):85–94. doi: 10.1098/rspb.1992.0046. [DOI] [PubMed] [Google Scholar]
  31. McDonald J. H. Improved tests for heterogeneity across a region of DNA sequence in the ratio of polymorphism to divergence. Mol Biol Evol. 1998 Apr;15(4):377–384. doi: 10.1093/oxfordjournals.molbev.a025934. [DOI] [PubMed] [Google Scholar]
  32. Miller S. A., Dykes D. D., Polesky H. F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988 Feb 11;16(3):1215–1215. doi: 10.1093/nar/16.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Okimoto R., Macfarlane J. L., Clary D. O., Wolstenholme D. R. The mitochondrial genomes of two nematodes, Caenorhabditis elegans and Ascaris suum. Genetics. 1992 Mar;130(3):471–498. doi: 10.1093/genetics/130.3.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rawson P. D., Hilbish T. J. Evolutionary relationships among the male and female mitochondrial DNA lineages in the Mytilus edulis species complex. Mol Biol Evol. 1995 Sep;12(5):893–901. doi: 10.1093/oxfordjournals.molbev.a040266. [DOI] [PubMed] [Google Scholar]
  35. Rawson P. D., Secor C. L., Hilbish T. J. The effects of natural hybridization on the regulation of doubly uniparental mtDNA inheritance in blue mussels (Mytilus spp.). Genetics. 1996 Sep;144(1):241–248. doi: 10.1093/genetics/144.1.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ray David Alfred, Densmore Llewellyn. The crocodilian mitochondrial control region: general structure, conserved sequences, and evolutionary implications. J Exp Zool. 2002 Dec 15;294(4):334–345. doi: 10.1002/jez.10198. [DOI] [PubMed] [Google Scholar]
  37. Roberti M., Mustich A., Gadaleta M. N., Cantatore P. Identification of two homologous mitochondrial DNA sequences, which bind strongly and specifically to a mitochondrial protein of Paracentrotus lividus. Nucleic Acids Res. 1991 Nov 25;19(22):6249–6254. doi: 10.1093/nar/19.22.6249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Roberti M., Polosa P. L., Musicco C., Milella F., Qureshi S. A., Gadaleta M. N., Jacobs H. T., Cantatore P. In vivo mitochondrial DNA-protein interactions in sea urchin eggs and embryos. Curr Genet. 1999 Jan;34(6):449–458. doi: 10.1007/s002940050419. [DOI] [PubMed] [Google Scholar]
  39. Rozas Julio, Sánchez-DelBarrio Juan C., Messeguer Xavier, Rozas Ricardo. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics. 2003 Dec 12;19(18):2496–2497. doi: 10.1093/bioinformatics/btg359. [DOI] [PubMed] [Google Scholar]
  40. Saccone C., Attimonelli M., Sbisà E. Structural elements highly preserved during the evolution of the D-loop-containing region in vertebrate mitochondrial DNA. J Mol Evol. 1987;26(3):205–211. doi: 10.1007/BF02099853. [DOI] [PubMed] [Google Scholar]
  41. Saccone C., De Giorgi C., Gissi C., Pesole G., Reyes A. Evolutionary genomics in Metazoa: the mitochondrial DNA as a model system. Gene. 1999 Sep 30;238(1):195–209. doi: 10.1016/s0378-1119(99)00270-x. [DOI] [PubMed] [Google Scholar]
  42. Saccone C., Pesole G., Sbisá E. The main regulatory region of mammalian mitochondrial DNA: structure-function model and evolutionary pattern. J Mol Evol. 1991 Jul;33(1):83–91. doi: 10.1007/BF02100199. [DOI] [PubMed] [Google Scholar]
  43. Saccone Cecilia, Gissi Carmela, Reyes Aurelio, Larizza Alessandra, Sbisà Elisabetta, Pesole Graziano. Mitochondrial DNA in metazoa: degree of freedom in a frozen event. Gene. 2002 Mar 6;286(1):3–12. doi: 10.1016/s0378-1119(01)00807-1. [DOI] [PubMed] [Google Scholar]
  44. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  45. Sbisà E., Tanzariello F., Reyes A., Pesole G., Saccone C. Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications. Gene. 1997 Dec 31;205(1-2):125–140. doi: 10.1016/s0378-1119(97)00404-6. [DOI] [PubMed] [Google Scholar]
  46. Serb Jeanne M., Lydeard Charles. Complete mtDNA sequence of the North American freshwater mussel, Lampsilis ornata (Unionidae): an examination of the evolution and phylogenetic utility of mitochondrial genome organization in Bivalvia (Mollusca). Mol Biol Evol. 2003 Aug 29;20(11):1854–1866. doi: 10.1093/molbev/msg218. [DOI] [PubMed] [Google Scholar]
  47. Skibinski D. O., Gallagher C., Beynon C. M. Mitochondrial DNA inheritance. Nature. 1994 Apr 28;368(6474):817–818. doi: 10.1038/368817b0. [DOI] [PubMed] [Google Scholar]
  48. Skibinski D. O., Gallagher C., Beynon C. M. Sex-limited mitochondrial DNA transmission in the marine mussel Mytilus edulis. Genetics. 1994 Nov;138(3):801–809. doi: 10.1093/genetics/138.3.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Spruyt N., Delarbre C., Gachelin G., Laudet V. Complete sequence of the amphioxus (Branchiostoma lanceolatum) mitochondrial genome: relations to vertebrates. Nucleic Acids Res. 1998 Jul 1;26(13):3279–3285. doi: 10.1093/nar/26.13.3279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Stewart D. T., Saavedra C., Stanwood R. R., Ball A. O., Zouros E. Male and female mitochondrial DNA lineages in the blue mussel (Mytilus edulis) species group. Mol Biol Evol. 1995 Sep;12(5):735–747. doi: 10.1093/oxfordjournals.molbev.a040252. [DOI] [PubMed] [Google Scholar]
  51. Stoneking M. Hypervariable sites in the mtDNA control region are mutational hotspots. Am J Hum Genet. 2000 Aug 30;67(4):1029–1032. doi: 10.1086/303092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Suzuki H., Hosokawa Y., Nishikimi M., Ozawa T. Existence of common homologous elements in the transcriptional regulatory regions of human nuclear genes and mitochondrial gene for the oxidative phosphorylation system. J Biol Chem. 1991 Feb 5;266(4):2333–2338. [PubMed] [Google Scholar]
  53. Taanman J. W. The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta. 1999 Feb 9;1410(2):103–123. doi: 10.1016/s0005-2728(98)00161-3. [DOI] [PubMed] [Google Scholar]
  54. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997 Dec 15;25(24):4876–4882. doi: 10.1093/nar/25.24.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Tomita Kozo, Yokobori Shin-ichi, Oshima Tairo, Ueda Takuya, Watanabe Kimitsuna. The cephalopod Loligo bleekeri mitochondrial genome: multiplied noncoding regions and transposition of tRNA genes. J Mol Evol. 2002 Apr;54(4):486–500. doi: 10.1007/s00239-001-0039-4. [DOI] [PubMed] [Google Scholar]
  56. Valverde J. R., Marco R., Garesse R. A conserved heptamer motif for ribosomal RNA transcription termination in animal mitochondria. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5368–5371. doi: 10.1073/pnas.91.12.5368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Zouros E., Ball A. O., Saavedra C., Freeman K. R. Mitochondrial DNA inheritance. Nature. 1994 Apr 28;368(6474):818–818. doi: 10.1038/368818a0. [DOI] [PubMed] [Google Scholar]
  58. Zuker Michael. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003 Jul 1;31(13):3406–3415. doi: 10.1093/nar/gkg595. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES