Abstract
Adenine nucleotide translocase (Ant) catalyzes ADP/ATP exchange between the cytosol and the mitochondrial matrix. It is also proposed to form or regulate the mitochondrial permeability transition pore, a megachannel of high conductancy on the mitochondrial membranes. Eukaryotic genomes generally contain multiple isoforms of Ant. In this study, it is shown that the Ant isoforms are functionally differentiated in Saccharomyces cerevisiae. Although the three yeast Ant proteins can equally support respiration (the R function), Aac2p and Aac3p, but not Aac1p, have an additional physiological function essential for cell viability (the V function). The loss of V function in aac2 mutants leads to a lethal phenotype under both aerobic and anaerobic conditions. The lethality is suppressed by a strain-polymorphic locus, named SAL1 (for Suppressor of aac2 lethality). SAL1 was identified to encode an evolutionarily conserved protein of the mitochondrial carrier family. Notably, the Sal1 protein was shown to bind calcium through two EF-hand motifs located on its amino terminus. Calcium binding is essential for the suppressor activity. Finally, Sal1p is not required for oxidative phosphorylation and its overexpression does not complement the R(-) phenotype of aac2 mutants. On the basis of these observations, it is proposed that Aac2p and Sal1p may define two parallel pathways that transport a nucleotide substrate in an operational mode distinct from ADP/ATP exchange.
Full Text
The Full Text of this article is available as a PDF (477.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aprille J. R. Mechanism and regulation of the mitochondrial ATP-Mg/P(i) carrier. J Bioenerg Biomembr. 1993 Oct;25(5):473–481. doi: 10.1007/BF01108404. [DOI] [PubMed] [Google Scholar]
- Bauer M. K., Schubert A., Rocks O., Grimm S. Adenine nucleotide translocase-1, a component of the permeability transition pore, can dominantly induce apoptosis. J Cell Biol. 1999 Dec 27;147(7):1493–1502. doi: 10.1083/jcb.147.7.1493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Belenkiy R., Haefele A., Eisen M. B., Wohlrab H. The yeast mitochondrial transport proteins: new sequences and consensus residues, lack of direct relation between consensus residues and transmembrane helices, expression patterns of the transport protein genes, and protein-protein interactions with other proteins. Biochim Biophys Acta. 2000 Jul 31;1467(1):207–218. doi: 10.1016/s0005-2736(00)00222-4. [DOI] [PubMed] [Google Scholar]
- Bouillaud F., Arechaga I., Petit P. X., Raimbault S., Levi-Meyrueis C., Casteilla L., Laurent M., Rial E., Ricquier D. A sequence related to a DNA recognition element is essential for the inhibition by nucleotides of proton transport through the mitochondrial uncoupling protein. EMBO J. 1994 Apr 15;13(8):1990–1997. doi: 10.1002/j.1460-2075.1994.tb06468.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen X. J., Clark-Walker G. D. Alpha and beta subunits of F1-ATPase are required for survival of petite mutants in Saccharomyces cerevisiae. Mol Gen Genet. 1999 Dec;262(4-5):898–908. doi: 10.1007/s004380051156. [DOI] [PubMed] [Google Scholar]
- Chen Xin Jie. Induction of an unregulated channel by mutations in adenine nucleotide translocase suggests an explanation for human ophthalmoplegia. Hum Mol Genet. 2002 Aug 1;11(16):1835–1843. doi: 10.1093/hmg/11.16.1835. [DOI] [PubMed] [Google Scholar]
- Drgon T., Sabová L., Nelson N., Kolarov J. ADP/ATP translocator is essential only for anaerobic growth of yeast Saccharomyces cerevisiae. FEBS Lett. 1991 Sep 9;289(2):159–162. doi: 10.1016/0014-5793(91)81059-h. [DOI] [PubMed] [Google Scholar]
- Ellison J. W., Li X., Francke U., Shapiro L. J. Rapid evolution of human pseudoautosomal genes and their mouse homologs. Mamm Genome. 1996 Jan;7(1):25–30. doi: 10.1007/s003359900007. [DOI] [PubMed] [Google Scholar]
- Esposito L. A., Melov S., Panov A., Cottrell B. A., Wallace D. C. Mitochondrial disease in mouse results in increased oxidative stress. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):4820–4825. doi: 10.1073/pnas.96.9.4820. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fiore C., Trézéguet V., Le Saux A., Roux P., Schwimmer C., Dianoux A. C., Noel F., Lauquin G. J., Brandolin G., Vignais P. V. The mitochondrial ADP/ATP carrier: structural, physiological and pathological aspects. Biochimie. 1998 Feb;80(2):137–150. doi: 10.1016/s0300-9084(98)80020-5. [DOI] [PubMed] [Google Scholar]
- Gawaz M., Douglas M. G., Klingenberg M. Structure-function studies of adenine nucleotide transport in mitochondria. II. Biochemical analysis of distinct AAC1 and AAC2 proteins in yeast. J Biol Chem. 1990 Aug 25;265(24):14202–14208. [PubMed] [Google Scholar]
- Hackenberg H., Klingenberg M. Molecular weight and hydrodynamic parameters of the adenosine 5'-diphosphate--adenosine 5'-triphosphate carrier in Triton X-100. Biochemistry. 1980 Feb 5;19(3):548–555. doi: 10.1021/bi00544a024. [DOI] [PubMed] [Google Scholar]
- Haworth R. A., Hunter D. R. The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site. Arch Biochem Biophys. 1979 Jul;195(2):460–467. doi: 10.1016/0003-9861(79)90372-2. [DOI] [PubMed] [Google Scholar]
- Hunter D. R., Haworth R. A. The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. Arch Biochem Biophys. 1979 Jul;195(2):453–459. doi: 10.1016/0003-9861(79)90371-0. [DOI] [PubMed] [Google Scholar]
- Kaplan R. S. Structure and function of mitochondrial anion transport proteins. J Membr Biol. 2001 Feb 1;179(3):165–183. doi: 10.1007/s002320010046. [DOI] [PubMed] [Google Scholar]
- Kaukonen J., Juselius J. K., Tiranti V., Kyttälä A., Zeviani M., Comi G. P., Keränen S., Peltonen L., Suomalainen A. Role of adenine nucleotide translocator 1 in mtDNA maintenance. Science. 2000 Aug 4;289(5480):782–785. doi: 10.1126/science.289.5480.782. [DOI] [PubMed] [Google Scholar]
- Kobayashi K., Sinasac D. S., Iijima M., Boright A. P., Begum L., Lee J. R., Yasuda T., Ikeda S., Hirano R., Terazono H. The gene mutated in adult-onset type II citrullinaemia encodes a putative mitochondrial carrier protein. Nat Genet. 1999 Jun;22(2):159–163. doi: 10.1038/9667. [DOI] [PubMed] [Google Scholar]
- Kokoszka Jason E., Waymire Katrina G., Levy Shawn E., Sligh James E., Cai Jiyang, Jones Dean P., MacGregor Grant R., Wallace Douglas C. The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature. 2004 Jan 29;427(6973):461–465. doi: 10.1038/nature02229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolarov J., Kolarova N., Nelson N. A third ADP/ATP translocator gene in yeast. J Biol Chem. 1990 Jul 25;265(21):12711–12716. [PubMed] [Google Scholar]
- Kovác L., Lachowicz T. M., Slonimski P. P. Biochemical genetics of oxidative phosphorylation. Science. 1967 Dec 22;158(3808):1564–1567. doi: 10.1126/science.158.3808.1564. [DOI] [PubMed] [Google Scholar]
- Kunji Edmund R. S., Harding Marilyn. Projection structure of the atractyloside-inhibited mitochondrial ADP/ATP carrier of Saccharomyces cerevisiae. J Biol Chem. 2003 Jul 31;278(39):36985–36988. doi: 10.1074/jbc.C300304200. [DOI] [PubMed] [Google Scholar]
- Lawson J. E., Gawaz M., Klingenberg M., Douglas M. G. Structure-function studies of adenine nucleotide transport in mitochondria. I. Construction and genetic analysis of yeast mutants encoding the ADP/ATP carrier protein of mitochondria. J Biol Chem. 1990 Aug 25;265(24):14195–14201. [PubMed] [Google Scholar]
- Lunardi J., Attardi G. Differential regulation of expression of the multiple ADP/ATP translocase genes in human cells. J Biol Chem. 1991 Sep 5;266(25):16534–16540. [PubMed] [Google Scholar]
- Lunardi J., Hurko O., Engel W. K., Attardi G. The multiple ADP/ATP translocase genes are differentially expressed during human muscle development. J Biol Chem. 1992 Aug 5;267(22):15267–15270. [PubMed] [Google Scholar]
- Mashima Hirosato, Ueda Namiki, Ohno Hideki, Suzuki Junko, Ohnishi Hirohide, Yasuda Hiroshi, Tsuchida Tomohiro, Kanamaru Chiho, Makita Noriko, Iiri Taro. A novel mitochondrial Ca2+-dependent solute carrier in the liver identified by mRNA differential display. J Biol Chem. 2003 Mar 14;278(11):9520–9527. doi: 10.1074/jbc.m208398200. [DOI] [PubMed] [Google Scholar]
- Moraes C. T., DiMauro S., Zeviani M., Lombes A., Shanske S., Miranda A. F., Nakase H., Bonilla E., Werneck L. C., Servidei S. Mitochondrial DNA deletions in progressive external ophthalmoplegia and Kearns-Sayre syndrome. N Engl J Med. 1989 May 18;320(20):1293–1299. doi: 10.1056/NEJM198905183202001. [DOI] [PubMed] [Google Scholar]
- Müller V., Basset G., Nelson D. R., Klingenberg M. Probing the role of positive residues in the ADP/ATP carrier from yeast. The effect of six arginine mutations of oxidative phosphorylation and AAC expression. Biochemistry. 1996 Dec 17;35(50):16132–16143. doi: 10.1021/bi960667r. [DOI] [PubMed] [Google Scholar]
- Nelson D. R., Felix C. M., Swanson J. M. Highly conserved charge-pair networks in the mitochondrial carrier family. J Mol Biol. 1998 Mar 27;277(2):285–308. doi: 10.1006/jmbi.1997.1594. [DOI] [PubMed] [Google Scholar]
- Palmieri L., Lasorsa F. M., Vozza A., Agrimi G., Fiermonte G., Runswick M. J., Walker J. E., Palmieri F. Identification and functions of new transporters in yeast mitochondria. Biochim Biophys Acta. 2000 Aug 15;1459(2-3):363–369. doi: 10.1016/s0005-2728(00)00173-0. [DOI] [PubMed] [Google Scholar]
- Palmieri L., Pardo B., Lasorsa F. M., del Arco A., Kobayashi K., Iijima M., Runswick M. J., Walker J. E., Saheki T., Satrústegui J. Citrin and aralar1 are Ca(2+)-stimulated aspartate/glutamate transporters in mitochondria. EMBO J. 2001 Sep 17;20(18):5060–5069. doi: 10.1093/emboj/20.18.5060. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pebay-Peyroula Eva, Dahout-Gonzalez Cécile, Kahn Richard, Trézéguet Véronique, Lauquin Guy J-M, Brandolin Gérard. Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature. 2003 Nov 6;426(6962):39–44. doi: 10.1038/nature02056. [DOI] [PubMed] [Google Scholar]
- Powell S. J., Medd S. M., Runswick M. J., Walker J. E. Two bovine genes for mitochondrial ADP/ATP translocase expressed differences in various tissues. Biochemistry. 1989 Jan 24;28(2):866–873. doi: 10.1021/bi00428a069. [DOI] [PubMed] [Google Scholar]
- Stepien G., Torroni A., Chung A. B., Hodge J. A., Wallace D. C. Differential expression of adenine nucleotide translocator isoforms in mammalian tissues and during muscle cell differentiation. J Biol Chem. 1992 Jul 25;267(21):14592–14597. [PubMed] [Google Scholar]
- Suomalainen A., Kaukonen J. Diseases caused by nuclear genes affecting mtDNA stability. Am J Med Genet. 2001 Spring;106(1):53–61. doi: 10.1002/ajmg.1379. [DOI] [PubMed] [Google Scholar]
- Suomalainen A., Majander A., Wallin M., Setälä K., Kontula K., Leinonen H., Salmi T., Paetau A., Haltia M., Valanne L. Autosomal dominant progressive external ophthalmoplegia with multiple deletions of mtDNA: clinical, biochemical, and molecular genetic features of the 10q-linked disease. Neurology. 1997 May;48(5):1244–1253. doi: 10.1212/wnl.48.5.1244. [DOI] [PubMed] [Google Scholar]
- Vyssokikh M. Y., Katz A., Rueck A., Wuensch C., Dörner A., Zorov D. B., Brdiczka D. Adenine nucleotide translocator isoforms 1 and 2 are differently distributed in the mitochondrial inner membrane and have distinct affinities to cyclophilin D. Biochem J. 2001 Sep 1;358(Pt 2):349–358. doi: 10.1042/0264-6021:3580349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeviani M., Servidei S., Gellera C., Bertini E., DiMauro S., DiDonato S. An autosomal dominant disorder with multiple deletions of mitochondrial DNA starting at the D-loop region. Nature. 1989 May 25;339(6222):309–311. doi: 10.1038/339309a0. [DOI] [PubMed] [Google Scholar]
- Zhang Y. Q., Roote J., Brogna S., Davis A. W., Barbash D. A., Nash D., Ashburner M. stress sensitive B encodes an adenine nucleotide translocase in Drosophila melanogaster. Genetics. 1999 Oct;153(2):891–903. doi: 10.1093/genetics/153.2.891. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zoratti M., Szabò I. The mitochondrial permeability transition. Biochim Biophys Acta. 1995 Jul 17;1241(2):139–176. doi: 10.1016/0304-4157(95)00003-a. [DOI] [PubMed] [Google Scholar]
- del Arco A., Satrústegui J. Molecular cloning of Aralar, a new member of the mitochondrial carrier superfamily that binds calcium and is present in human muscle and brain. J Biol Chem. 1998 Sep 4;273(36):23327–23334. doi: 10.1074/jbc.273.36.23327. [DOI] [PubMed] [Google Scholar]