Abstract
A safe and effective HIV-1 vaccine is urgently needed to control the worldwide AIDS epidemic. Traditional methods of vaccine development have been frustratingly slow, and it is becoming increasingly apparent that radical new approaches may be required. Computational and mathematical approaches, combined with evolutionary reasoning, may provide new insights for the design of an efficacious AIDS vaccine. Here, we used codon-based substitution models and maximum-likelihood (ML) methods to identify positively selected sites that are likely to be involved in the immune control of HIV-1. Analysis of subtypes B and C revealed widespread adaptive evolution. Positively selected amino acids were detected in all nine HIV-1 proteins, including Env. Of particular interest was the high level of positive selection within the C-terminal regions of the immediate-early regulatory proteins, Tat and Rev. Many of the amino acid replacements were associated with the emergence of novel (or alternative) myristylation and casein kinase II (CKII) phosphorylation sites. The impact of these changes on the conformation and antigenicity of Tat and Rev remains to be established. In rhesus macaques, a single CTL-associated amino substitution in Tat has been linked to escape from acute SIV infection. Understanding the relationship between host-driven positive selection and antigenic variation may lead to the development of novel vaccine strategies that preempt the escape process.
Full Text
The Full Text of this article is available as a PDF (376.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abele R., Tampé R. Function of the transport complex TAP in cellular immune recognition. Biochim Biophys Acta. 1999 Dec 6;1461(2):405–419. doi: 10.1016/s0005-2736(99)00171-6. [DOI] [PubMed] [Google Scholar]
- Allen T. M., O'Connor D. H., Jing P., Dzuris J. L., Mothé B. R., Vogel T. U., Dunphy E., Liebl M. E., Emerson C., Wilson N. Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viraemia. Nature. 2000 Sep 21;407(6802):386–390. doi: 10.1038/35030124. [DOI] [PubMed] [Google Scholar]
- Barouch Dan H., Kunstman Jennifer, Kuroda Marcelo J., Schmitz Jörn E., Santra Sampa, Peyerl Fred W., Krivulka Georgia R., Beaudry Kristin, Lifton Michelle A., Gorgone Darci A. Eventual AIDS vaccine failure in a rhesus monkey by viral escape from cytotoxic T lymphocytes. Nature. 2002 Jan 17;415(6869):335–339. doi: 10.1038/415335a. [DOI] [PubMed] [Google Scholar]
- Bochtler M., Ditzel L., Groll M., Hartmann C., Huber R. The proteasome. Annu Rev Biophys Biomol Struct. 1999;28:295–317. doi: 10.1146/annurev.biophys.28.1.295. [DOI] [PubMed] [Google Scholar]
- Check Erika. AIDS vaccines: back to 'plan A'. Nature. 2003 Jun 26;423(6943):912–914. doi: 10.1038/423912a. [DOI] [PubMed] [Google Scholar]
- Chun R. F., Semmes O. J., Neuveut C., Jeang K. T. Modulation of Sp1 phosphorylation by human immunodeficiency virus type 1 Tat. J Virol. 1998 Apr;72(4):2615–2629. doi: 10.1128/jvi.72.4.2615-2629.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daniel M. D., Kirchhoff F., Czajak S. C., Sehgal P. K., Desrosiers R. C. Protective effects of a live attenuated SIV vaccine with a deletion in the nef gene. Science. 1992 Dec 18;258(5090):1938–1941. doi: 10.1126/science.1470917. [DOI] [PubMed] [Google Scholar]
- De Oliveira T., Miller R., Tarin M., Cassol S. An integrated genetic data environment (GDE)-based LINUX interface for analysis of HIV-1 and other microbial sequences. Bioinformatics. 2003 Jan;19(1):153–154. doi: 10.1093/bioinformatics/19.1.153. [DOI] [PubMed] [Google Scholar]
- Dunn C. S., Hurtrel B., Beyer C., Gloeckler L., Ledger T. N., Moog C., Kieny M. P., Mehtali M., Schmitt D., Gut J. P. Protection of SIVmac-infected macaque monkeys against superinfection by a simian immunodeficiency virus expressing envelope glycoproteins of HIV type 1. AIDS Res Hum Retroviruses. 1997 Jul 20;13(11):913–922. doi: 10.1089/aid.1997.13.913. [DOI] [PubMed] [Google Scholar]
- Fouts D. E., True H. L., Cengel K. A., Celander D. W. Site-specific phosphorylation of the human immunodeficiency virus type-1 Rev protein accelerates formation of an efficient RNA-binding conformation. Biochemistry. 1997 Oct 28;36(43):13256–13262. doi: 10.1021/bi971551d. [DOI] [PubMed] [Google Scholar]
- Gaschen Brian, Taylor Jesse, Yusim Karina, Foley Brian, Gao Feng, Lang Dorothy, Novitsky Vladimir, Haynes Barton, Hahn Beatrice H., Bhattacharya Tanmoy. Diversity considerations in HIV-1 vaccine selection. Science. 2002 Jun 28;296(5577):2354–2360. doi: 10.1126/science.1070441. [DOI] [PubMed] [Google Scholar]
- Goulder P. J., Phillips R. E., Colbert R. A., McAdam S., Ogg G., Nowak M. A., Giangrande P., Luzzi G., Morgan B., Edwards A. Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nat Med. 1997 Feb;3(2):212–217. doi: 10.1038/nm0297-212. [DOI] [PubMed] [Google Scholar]
- Hoover E. A., Perigo N. A., Quackenbush S. L., Mathiason-DuBard C. K., Overbaugh J. M., Kloetzer W. S., Elder J. H., Mullins J. I. Protection against feline leukemia virus infection by use of an inactivated virus vaccine. J Am Vet Med Assoc. 1991 Nov 15;199(10):1392–1401. [PubMed] [Google Scholar]
- Huelsenbeck J. P., Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001 Aug;17(8):754–755. doi: 10.1093/bioinformatics/17.8.754. [DOI] [PubMed] [Google Scholar]
- Jeang K. T., Xiao H., Rich E. A. Multifaceted activities of the HIV-1 transactivator of transcription, Tat. J Biol Chem. 1999 Oct 8;274(41):28837–28840. doi: 10.1074/jbc.274.41.28837. [DOI] [PubMed] [Google Scholar]
- Karlsson A. C., Lindbäck S., Gaines H., Sönnerborg A. Characterization of the viral population during primary HIV-1 infection. AIDS. 1998 May 28;12(8):839–847. doi: 10.1097/00002030-199808000-00005. [DOI] [PubMed] [Google Scholar]
- Marin O., Sarno S., Boschetti M., Pagano M. A., Meggio F., Ciminale V., D'Agostino D. M., Pinna L. A. Unique features of HIV-1 Rev protein phosphorylation by protein kinase CK2 ('casein kinase-2'). FEBS Lett. 2000 Sep 8;481(1):63–67. doi: 10.1016/s0014-5793(00)01971-2. [DOI] [PubMed] [Google Scholar]
- McMichael A. J., Phillips R. E. Escape of human immunodeficiency virus from immune control. Annu Rev Immunol. 1997;15:271–296. doi: 10.1146/annurev.immunol.15.1.271. [DOI] [PubMed] [Google Scholar]
- McMichael A. T cell responses and viral escape. Cell. 1998 May 29;93(5):673–676. doi: 10.1016/s0092-8674(00)81428-2. [DOI] [PubMed] [Google Scholar]
- Meggio F., D'Agostino D. M., Ciminale V., Chieco-Bianchi L., Pinna L. A. Phosphorylation of HIV-1 Rev protein: implication of protein kinase CK2 and pro-directed kinases. Biochem Biophys Res Commun. 1996 Sep 13;226(2):547–554. doi: 10.1006/bbrc.1996.1392. [DOI] [PubMed] [Google Scholar]
- Mellors J. W., Muñoz A., Giorgi J. V., Margolick J. B., Tassoni C. J., Gupta P., Kingsley L. A., Todd J. A., Saah A. J., Detels R. Plasma viral load and CD4+ lymphocytes as prognostic markers of HIV-1 infection. Ann Intern Med. 1997 Jun 15;126(12):946–954. doi: 10.7326/0003-4819-126-12-199706150-00003. [DOI] [PubMed] [Google Scholar]
- Nielsen R., Yang Z. Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics. 1998 Mar;148(3):929–936. doi: 10.1093/genetics/148.3.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Novitsky V., Rybak N., McLane M. F., Gilbert P., Chigwedere P., Klein I., Gaolekwe S., Chang S. Y., Peter T., Thior I. Identification of human immunodeficiency virus type 1 subtype C Gag-, Tat-, Rev-, and Nef-specific elispot-based cytotoxic T-lymphocyte responses for AIDS vaccine design. J Virol. 2001 Oct;75(19):9210–9228. doi: 10.1128/JVI.75.19.9210-9228.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Connor D., Allen T., Watkins D. I. Vaccination with CTL epitopes that escape: an alternative approach to HIV vaccine development? Immunol Lett. 2001 Nov 1;79(1-2):77–84. doi: 10.1016/s0165-2478(01)00268-1. [DOI] [PubMed] [Google Scholar]
- Overbaugh J., Bangham C. R. Selection forces and constraints on retroviral sequence variation. Science. 2001 May 11;292(5519):1106–1109. doi: 10.1126/science.1059128. [DOI] [PubMed] [Google Scholar]
- Pamer E., Cresswell P. Mechanisms of MHC class I--restricted antigen processing. Annu Rev Immunol. 1998;16:323–358. doi: 10.1146/annurev.immunol.16.1.323. [DOI] [PubMed] [Google Scholar]
- Parada C. A., Roeder R. G. Enhanced processivity of RNA polymerase II triggered by Tat-induced phosphorylation of its carboxy-terminal domain. Nature. 1996 Nov 28;384(6607):375–378. doi: 10.1038/384375a0. [DOI] [PubMed] [Google Scholar]
- Posada D., Crandall K. A. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14(9):817–818. doi: 10.1093/bioinformatics/14.9.817. [DOI] [PubMed] [Google Scholar]
- Rambaut Andrew, Posada David, Crandall Keith A., Holmes Edward C. The causes and consequences of HIV evolution. Nat Rev Genet. 2004 Jan;5(1):52–61. doi: 10.1038/nrg1246. [DOI] [PubMed] [Google Scholar]
- Rammensee H., Bachmann J., Emmerich N. P., Bachor O. A., Stevanović S. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics. 1999 Nov;50(3-4):213–219. doi: 10.1007/s002510050595. [DOI] [PubMed] [Google Scholar]
- Rosenberg E. S., Billingsley J. M., Caliendo A. M., Boswell S. L., Sax P. E., Kalams S. A., Walker B. D. Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia. Science. 1997 Nov 21;278(5342):1447–1450. doi: 10.1126/science.278.5342.1447. [DOI] [PubMed] [Google Scholar]
- Wilson C. C., Brown R. C., Korber B. T., Wilkes B. M., Ruhl D. J., Sakamoto D., Kunstman K., Luzuriaga K., Hanson I. C., Widmayer S. M. Frequent detection of escape from cytotoxic T-lymphocyte recognition in perinatal human immunodeficiency virus (HIV) type 1 transmission: the ariel project for the prevention of transmission of HIV from mother to infant. J Virol. 1999 May;73(5):3975–3985. doi: 10.1128/jvi.73.5.3975-3985.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xia X., Xie Z. DAMBE: software package for data analysis in molecular biology and evolution. J Hered. 2001 Jul-Aug;92(4):371–373. doi: 10.1093/jhered/92.4.371. [DOI] [PubMed] [Google Scholar]
- Yang Wa, Bielawski Joseph P., Yang Ziheng. Widespread adaptive evolution in the human immunodeficiency virus type 1 genome. J Mol Evol. 2003 Aug;57(2):212–221. doi: 10.1007/s00239-003-2467-9. [DOI] [PubMed] [Google Scholar]
- Yang X., Herrmann C. H., Rice A. P. The human immunodeficiency virus Tat proteins specifically associate with TAK in vivo and require the carboxyl-terminal domain of RNA polymerase II for function. J Virol. 1996 Jul;70(7):4576–4584. doi: 10.1128/jvi.70.7.4576-4584.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang Z. Maximum likelihood analysis of adaptive evolution in HIV-1 gp120 env gene. Pac Symp Biocomput. 2001:226–237. [PubMed] [Google Scholar]
- Yang Z., Nielsen R., Goldman N., Pedersen A. M. Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics. 2000 May;155(1):431–449. doi: 10.1093/genetics/155.1.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 1997 Oct;13(5):555–556. doi: 10.1093/bioinformatics/13.5.555. [DOI] [PubMed] [Google Scholar]
- Yusim Karina, Kesmir Can, Gaschen Brian, Addo Marylyn M., Altfeld Marcus, Brunak Søren, Chigaev Alexandre, Detours Vincent, Korber Bette T. Clustering patterns of cytotoxic T-lymphocyte epitopes in human immunodeficiency virus type 1 (HIV-1) proteins reveal imprints of immune evasion on HIV-1 global variation. J Virol. 2002 Sep;76(17):8757–8768. doi: 10.1128/JVI.76.17.8757-8768.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zanotto P. M., Kallas E. G., de Souza R. F., Holmes E. C. Genealogical evidence for positive selection in the nef gene of HIV-1. Genetics. 1999 Nov;153(3):1077–1089. doi: 10.1093/genetics/153.3.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
- da Silva J., Hughes A. L. Conservation of cytotoxic T lymphocyte (CTL) epitopes as a host strategy to constrain parasite adaptation: evidence from the nef gene of human immunodeficiency virus 1 (HIV-1). Mol Biol Evol. 1998 Oct;15(10):1259–1268. doi: 10.1093/oxfordjournals.molbev.a025854. [DOI] [PubMed] [Google Scholar]
- de Oliveira Tulio, Engelbrecht Susan, Janse van Rensburg Estrelita, Gordon Michelle, Bishop Karen, zur Megede Jan, Barnett Susan W., Cassol Sharon. Variability at human immunodeficiency virus type 1 subtype C protease cleavage sites: an indication of viral fitness? J Virol. 2003 Sep;77(17):9422–9430. doi: 10.1128/JVI.77.17.9422-9430.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]