Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Nov 15;25(22):4570–4580. doi: 10.1093/nar/25.22.4570

RAGA: RNA sequence alignment by genetic algorithm.

C Notredame 1, E A O'Brien 1, D G Higgins 1
PMCID: PMC147093  PMID: 9358168

Abstract

We describe a new approach for accurately aligning two homologous RNA sequences when the secondary structure of one of them is known. To do so we developed two software packages, called RAGA and PRAGA, which use a genetic algorithm approach to optimize the alignments. RAGA is mainly an extension of SAGA, an earlier package for multiple protein sequence alignment. In PRAGA several genetic algorithms run in parallel and exchange individual solutions. This method allows us to optimize an objective function that describes the quality of a RNA pairwise alignment, taking into account both primary and secondary structure, including pseudoknots. We report results obtained using PRAGA on nine test cases of pairs of eukaryotic small subunit rRNA sequence (nuclear and mitochondrial).

Full Text

The Full Text of this article is available as a PDF (311.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahams J. P., van den Berg M., van Batenburg E., Pleij C. Prediction of RNA secondary structure, including pseudoknotting, by computer simulation. Nucleic Acids Res. 1990 May 25;18(10):3035–3044. doi: 10.1093/nar/18.10.3035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Corpet F., Michot B. RNAlign program: alignment of RNA sequences using both primary and secondary structures. Comput Appl Biosci. 1994 Jul;10(4):389–399. doi: 10.1093/bioinformatics/10.4.389. [DOI] [PubMed] [Google Scholar]
  3. Eddy S. R., Durbin R. RNA sequence analysis using covariance models. Nucleic Acids Res. 1994 Jun 11;22(11):2079–2088. doi: 10.1093/nar/22.11.2079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gotoh O. An improved algorithm for matching biological sequences. J Mol Biol. 1982 Dec 15;162(3):705–708. doi: 10.1016/0022-2836(82)90398-9. [DOI] [PubMed] [Google Scholar]
  5. Gotoh O. Consistency of optimal sequence alignments. Bull Math Biol. 1990;52(4):509–525. doi: 10.1007/BF02462264. [DOI] [PubMed] [Google Scholar]
  6. Gotoh O. Optimal alignment between groups of sequences and its application to multiple sequence alignment. Comput Appl Biosci. 1993 Jun;9(3):361–370. doi: 10.1093/bioinformatics/9.3.361. [DOI] [PubMed] [Google Scholar]
  7. Grate L. Automatic RNA secondary structure determination with stochastic context-free grammars. Proc Int Conf Intell Syst Mol Biol. 1995;3:136–144. [PubMed] [Google Scholar]
  8. Gultyaev A. P., van Batenburg F. H., Pleij C. W. The computer simulation of RNA folding pathways using a genetic algorithm. J Mol Biol. 1995 Jun 30;250(1):37–51. doi: 10.1006/jmbi.1995.0356. [DOI] [PubMed] [Google Scholar]
  9. Gutell R. R., Weiser B., Woese C. R., Noller H. F. Comparative anatomy of 16-S-like ribosomal RNA. Prog Nucleic Acid Res Mol Biol. 1985;32:155–216. doi: 10.1016/s0079-6603(08)60348-7. [DOI] [PubMed] [Google Scholar]
  10. Kim J., Cole J. R., Pramanik S. Alignment of possible secondary structures in multiple RNA sequences using simulated annealing. Comput Appl Biosci. 1996 Aug;12(4):259–267. doi: 10.1093/bioinformatics/12.4.259. [DOI] [PubMed] [Google Scholar]
  11. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980 Dec;16(2):111–120. doi: 10.1007/BF01731581. [DOI] [PubMed] [Google Scholar]
  12. Kirkpatrick S., Gelatt C. D., Jr, Vecchi M. P. Optimization by simulated annealing. Science. 1983 May 13;220(4598):671–680. doi: 10.1126/science.220.4598.671. [DOI] [PubMed] [Google Scholar]
  13. Lathrop R. H. The protein threading problem with sequence amino acid interaction preferences is NP-complete. Protein Eng. 1994 Sep;7(9):1059–1068. doi: 10.1093/protein/7.9.1059. [DOI] [PubMed] [Google Scholar]
  14. Lawrence C. E., Altschul S. F., Boguski M. S., Liu J. S., Neuwald A. F., Wootton J. C. Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science. 1993 Oct 8;262(5131):208–214. doi: 10.1126/science.8211139. [DOI] [PubMed] [Google Scholar]
  15. Michot B., Qu L. H., Bachellerie J. P. Evolution of large-subunit rRNA structure. The diversification of divergent D3 domain among major phylogenetic groups. Eur J Biochem. 1990 Mar 10;188(2):219–229. doi: 10.1111/j.1432-1033.1990.tb15393.x. [DOI] [PubMed] [Google Scholar]
  16. Myers E. W., Miller W. Optimal alignments in linear space. Comput Appl Biosci. 1988 Mar;4(1):11–17. doi: 10.1093/bioinformatics/4.1.11. [DOI] [PubMed] [Google Scholar]
  17. Needleman S. B., Wunsch C. D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970 Mar;48(3):443–453. doi: 10.1016/0022-2836(70)90057-4. [DOI] [PubMed] [Google Scholar]
  18. Neefs J. M., De Wachter R. A proposal for the secondary structure of a variable area of eukaryotic small ribosomal subunit RNA involving the existence of a pseudoknot. Nucleic Acids Res. 1990 Oct 11;18(19):5695–5704. doi: 10.1093/nar/18.19.5695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Neefs J. M., Van de Peer Y., De Rijk P., Chapelle S., De Wachter R. Compilation of small ribosomal subunit RNA structures. Nucleic Acids Res. 1993 Jul 1;21(13):3025–3049. doi: 10.1093/nar/21.13.3025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Notredame C., Higgins D. G. SAGA: sequence alignment by genetic algorithm. Nucleic Acids Res. 1996 Apr 15;24(8):1515–1524. doi: 10.1093/nar/24.8.1515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ogata H., Akiyama Y., Kanehisa M. A genetic algorithm based molecular modeling technique for RNA stem-loop structures. Nucleic Acids Res. 1995 Feb 11;23(3):419–426. doi: 10.1093/nar/23.3.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pleij C. W. Pseudoknots: a new motif in the RNA game. Trends Biochem Sci. 1990 Apr;15(4):143–147. doi: 10.1016/0968-0004(90)90214-v. [DOI] [PubMed] [Google Scholar]
  23. Schmitz M., Steger G. Description of RNA folding by "simulated annealing". J Mol Biol. 1996 Jan 12;255(1):254–266. doi: 10.1006/jmbi.1996.0021. [DOI] [PubMed] [Google Scholar]
  24. Shapiro B. A., Maizel J., Lipkin L. E., Currey K., Whitney C. Generating non-overlapping displays of nucleic acid secondary structure. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):75–88. doi: 10.1093/nar/12.1part1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Shapiro B. A., Wu J. C. An annealing mutation operator in the genetic algorithms for RNA folding. Comput Appl Biosci. 1996 Jun;12(3):171–180. doi: 10.1093/bioinformatics/12.3.171. [DOI] [PubMed] [Google Scholar]
  26. Subramanian A. R. The ribosome: its evolutionary diversity and the functional role of one of its components. Essays Biochem. 1985;21:45–85. [PubMed] [Google Scholar]
  27. Tabaska J. E., Stormo G. D. Automated alignment of RNA sequences to pseudoknotted structures. Proc Int Conf Intell Syst Mol Biol. 1997;5:311–318. [PubMed] [Google Scholar]
  28. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Van de Peer Y., Jansen J., De Rijk P., De Wachter R. Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res. 1997 Jan 1;25(1):111–116. doi: 10.1093/nar/25.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zuker M. On finding all suboptimal foldings of an RNA molecule. Science. 1989 Apr 7;244(4900):48–52. doi: 10.1126/science.2468181. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES