Skip to main content
Genetics logoLink to Genetics
. 2004 Jul;167(3):1507–1512. doi: 10.1534/genetics.104.026344

Genome-wide patterns of nucleotide substitution reveal stringent functional constraints on the protein sequences of thermophiles.

Robert Friedman 1, John W Drake 1, Austin L Hughes 1
PMCID: PMC1470942  PMID: 15280258

Abstract

To test the hypothesis that the proteins of thermophilic prokaryotes are subject to unusually stringent functional constraints, we estimated the numbers of synonymous and nonsynonymous nucleotide substitutions per site between 17,957 pairs of orthologous genes from 22 pairs of closely related species of Archaea and Bacteria. The average ratio of nonsynonymous to synonymous substitutions was significantly lower in thermophiles than in nonthermophiles, and this effect was observed in both Archaea and Bacteria. There was no evidence that this difference could be explained by factors such as nucleotide content bias. Rather, the results support the hypothesis that proteins of thermophiles are subject to unusually strong purifying selection, leading to a reduced overall level of amino acid evolution per mutational event. The results show that genome-wide patterns of sequence evolution can be influenced by natural selection exerted by a species' environment and shed light on a previous observation that relatively few of the mutations arising in a thermophilic archaeon were nucleotide substitutions in contrast to indels.

Full Text

The Full Text of this article is available as a PDF (103.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blanc Guillaume, Hokamp Karsten, Wolfe Kenneth H. A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res. 2003 Feb;13(2):137–144. doi: 10.1101/gr.751803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown J. R., Lupas A. N. What makes a thermophile? Trends Microbiol. 1998 Sep;6(9):349–350. doi: 10.1016/s0966-842x(98)01351-1. [DOI] [PubMed] [Google Scholar]
  4. Bulmer M. The selection-mutation-drift theory of synonymous codon usage. Genetics. 1991 Nov;129(3):897–907. doi: 10.1093/genetics/129.3.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cambillau C., Claverie J. M. Structural and genomic correlates of hyperthermostability. J Biol Chem. 2000 Oct 20;275(42):32383–32386. doi: 10.1074/jbc.C000497200. [DOI] [PubMed] [Google Scholar]
  6. Criswell Angela R., Bae Euiyoung, Stec Boguslaw, Konisky Jordan, Phillips George N., Jr Structures of thermophilic and mesophilic adenylate kinases from the genus Methanococcus. J Mol Biol. 2003 Jul 25;330(5):1087–1099. doi: 10.1016/s0022-2836(03)00655-7. [DOI] [PubMed] [Google Scholar]
  7. Grogan D. W., Carver G. T., Drake J. W. Genetic fidelity under harsh conditions: analysis of spontaneous mutation in the thermoacidophilic archaeon Sulfolobus acidocaldarius. Proc Natl Acad Sci U S A. 2001 Jun 26;98(14):7928–7933. doi: 10.1073/pnas.141113098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gromiha M. M., Oobatake M., Sarai A. Important amino acid properties for enhanced thermostability from mesophilic to thermophilic proteins. Biophys Chem. 1999 Nov 15;82(1):51–67. doi: 10.1016/s0301-4622(99)00103-9. [DOI] [PubMed] [Google Scholar]
  9. Kimura M. Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature. 1977 May 19;267(5608):275–276. doi: 10.1038/267275a0. [DOI] [PubMed] [Google Scholar]
  10. Kollman J. M., Doolittle R. F. Determining the relative rates of change for prokaryotic and eukaryotic proteins with anciently duplicated paralogs. J Mol Evol. 2000 Aug;51(2):173–181. doi: 10.1007/s002390010078. [DOI] [PubMed] [Google Scholar]
  11. Kreil D. P., Ouzounis C. A. Identification of thermophilic species by the amino acid compositions deduced from their genomes. Nucleic Acids Res. 2001 Apr 1;29(7):1608–1615. doi: 10.1093/nar/29.7.1608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kumar S., Nussinov R. How do thermophilic proteins deal with heat? Cell Mol Life Sci. 2001 Aug;58(9):1216–1233. doi: 10.1007/PL00000935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kumar S., Tsai C. J., Nussinov R. Factors enhancing protein thermostability. Protein Eng. 2000 Mar;13(3):179–191. doi: 10.1093/protein/13.3.179. [DOI] [PubMed] [Google Scholar]
  14. Lambros R. J., Mortimer J. R., Forsdyke D. R. Optimum growth temperature and the base composition of open reading frames in prokaryotes. Extremophiles. 2003 Aug 28;7(6):443–450. doi: 10.1007/s00792-003-0353-4. [DOI] [PubMed] [Google Scholar]
  15. Lao P. J., Forsdyke D. R. Thermophilic bacteria strictly obey Szybalski's transcription direction rule and politely purine-load RNAs with both adenine and guanine. Genome Res. 2000 Feb;10(2):228–236. doi: 10.1101/gr.10.2.228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lynn David J., Singer Gregory A. C., Hickey Donal A. Synonymous codon usage is subject to selection in thermophilic bacteria. Nucleic Acids Res. 2002 Oct 1;30(19):4272–4277. doi: 10.1093/nar/gkf546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Perutz M. F. Electrostatic effects in proteins. Science. 1978 Sep 29;201(4362):1187–1191. doi: 10.1126/science.694508. [DOI] [PubMed] [Google Scholar]
  18. Sharp P. M., Li W. H. An evolutionary perspective on synonymous codon usage in unicellular organisms. J Mol Evol. 1986;24(1-2):28–38. doi: 10.1007/BF02099948. [DOI] [PubMed] [Google Scholar]
  19. Tekaia Fredj, Yeramian Edouard, Dujon Bernard. Amino acid composition of genomes, lifestyles of organisms, and evolutionary trends: a global picture with correspondence analysis. Gene. 2002 Sep 4;297(1-2):51–60. doi: 10.1016/s0378-1119(02)00871-5. [DOI] [PubMed] [Google Scholar]
  20. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Woese C. R., Kandler O., Wheelis M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4576–4579. doi: 10.1073/pnas.87.12.4576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Yang Z., Nielsen R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol. 2000 Jan;17(1):32–43. doi: 10.1093/oxfordjournals.molbev.a026236. [DOI] [PubMed] [Google Scholar]
  23. Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 1997 Oct;13(5):555–556. doi: 10.1093/bioinformatics/13.5.555. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES