Skip to main content
Genetics logoLink to Genetics
. 2004 Jul;167(3):1095–1107. doi: 10.1534/genetics.104.027946

Functional dissection of the gamma-tubulin complex by suppressor analysis of gtb1 and alp4 mutations in Schizosaccharomyces pombe.

Yoshie Tange 1, Akiko Fujita 1, Takashi Toda 1, Osami Niwa 1
PMCID: PMC1470944  PMID: 15280226

Abstract

In fission yeast, gamma-tubulin (encoded by the gtb1+ gene), Alp4 (Spc97/GCP2), and Alp6 (Spc98/GCP3) are essential components of the gamma-tubulin complex. We isolated gtb1 mutants as allele-specific suppressors of temperature-sensitive alp4 mutations. Mutation sites in gtb1 mutants and in several alp4 alleles were determined. The majority of substituted amino acids were mapped to a small area on the predicted surface of the gamma-tubulin molecule that might directly interact with the Alp4 protein. The cold sensitivity of gamma-tubulin mutants was almost completely suppressed by an alpha-tubulin mutation and partially suppressed by a low concentration of thiabendazole, a microtubule assembly inhibitor. Other gtb1 mutants had increased resistance to this drug. Gel-filtration and immunoprecipitation analyses suggested that the mutant gamma-tubulin formed an altered gamma-tubulin complex with increased stability compared to wild-type gamma-tubulin. In most gtb1 mutants, sexual development was impaired, and aberrant asci that contained an irregular spore shape and number were produced. In contrast, spore formation was not appreciably damaged in some alp4 and alp6 mutants, even at temperatures where vegetative proliferation was substantially defective. These results suggested that the function of the gamma-tubulin complex or the requirement of each component of the complex is differentially regulated between the vegetative and sexual phases of the life cycle in fission yeast. In addition, genetic data indicated intimate functional connections of gamma-tubulin with several kinesin-like proteins.

Full Text

The Full Text of this article is available as a PDF (488.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bähler J., Wu J. Q., Longtine M. S., Shah N. G., McKenzie A., 3rd, Steever A. B., Wach A., Philippsen P., Pringle J. R. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast. 1998 Jul;14(10):943–951. doi: 10.1002/(SICI)1097-0061(199807)14:10<943::AID-YEA292>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
  2. Chikashige Y., Ding D. Q., Imai Y., Yamamoto M., Haraguchi T., Hiraoka Y. Meiotic nuclear reorganization: switching the position of centromeres and telomeres in the fission yeast Schizosaccharomyces pombe. EMBO J. 1997 Jan 2;16(1):193–202. doi: 10.1093/emboj/16.1.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Desai A., Verma S., Mitchison T. J., Walczak C. E. Kin I kinesins are microtubule-destabilizing enzymes. Cell. 1999 Jan 8;96(1):69–78. doi: 10.1016/s0092-8674(00)80960-5. [DOI] [PubMed] [Google Scholar]
  4. Ding D. Q., Chikashige Y., Haraguchi T., Hiraoka Y. Oscillatory nuclear movement in fission yeast meiotic prophase is driven by astral microtubules, as revealed by continuous observation of chromosomes and microtubules in living cells. J Cell Sci. 1998 Mar;111(Pt 6):701–712. doi: 10.1242/jcs.111.6.701. [DOI] [PubMed] [Google Scholar]
  5. Erhardt Mathieu, Stoppin-Mellet Virginie, Campagne Sarah, Canaday Jean, Mutterer Jérôme, Fabian Tanja, Sauter Margret, Muller Thierry, Peter Christine, Lambert Anne-Marie. The plant Spc98p homologue colocalizes with gamma-tubulin at microtubule nucleation sites and is required for microtubule nucleation. J Cell Sci. 2002 Jun 1;115(Pt 11):2423–2431. doi: 10.1242/jcs.115.11.2423. [DOI] [PubMed] [Google Scholar]
  6. Fujita Akiko, Vardy Leah, Garcia Miguel Angel, Toda Takashi. A fourth component of the fission yeast gamma-tubulin complex, Alp16, is required for cytoplasmic microtubule integrity and becomes indispensable when gamma-tubulin function is compromised. Mol Biol Cell. 2002 Jul;13(7):2360–2373. doi: 10.1091/mbc.02-01-0603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Garcia Miguel Angel, Koonrugsa Nirada, Toda Takashi. Spindle-kinetochore attachment requires the combined action of Kin I-like Klp5/6 and Alp14/Dis1-MAPs in fission yeast. EMBO J. 2002 Nov 15;21(22):6015–6024. doi: 10.1093/emboj/cdf611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goto B., Okazaki K., Niwa O. Cytoplasmic microtubular system implicated in de novo formation of a Rabl-like orientation of chromosomes in fission yeast. J Cell Sci. 2001 Jul;114(Pt 13):2427–2435. doi: 10.1242/jcs.114.13.2427. [DOI] [PubMed] [Google Scholar]
  9. Gunawardane R. N., Martin O. C., Cao K., Zhang L., Dej K., Iwamatsu A., Zheng Y. Characterization and reconstitution of Drosophila gamma-tubulin ring complex subunits. J Cell Biol. 2000 Dec 25;151(7):1513–1524. doi: 10.1083/jcb.151.7.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hagan I. M. The fission yeast microtubule cytoskeleton. J Cell Sci. 1998 Jun;111(Pt 12):1603–1612. doi: 10.1242/jcs.111.12.1603. [DOI] [PubMed] [Google Scholar]
  11. Hagan I., Yanagida M. The product of the spindle formation gene sad1+ associates with the fission yeast spindle pole body and is essential for viability. J Cell Biol. 1995 May;129(4):1033–1047. doi: 10.1083/jcb.129.4.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hannak Eva, Oegema Karen, Kirkham Matthew, Gönczy Pierre, Habermann Bianca, Hyman Anthony A. The kinetically dominant assembly pathway for centrosomal asters in Caenorhabditis elegans is gamma-tubulin dependent. J Cell Biol. 2002 May 13;157(4):591–602. doi: 10.1083/jcb.200202047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hendrickson T. W., Yao J., Bhadury S., Corbett A. H., Joshi H. C. Conditional mutations in gamma-tubulin reveal its involvement in chromosome segregation and cytokinesis. Mol Biol Cell. 2001 Aug;12(8):2469–2481. doi: 10.1091/mbc.12.8.2469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Horio T., Uzawa S., Jung M. K., Oakley B. R., Tanaka K., Yanagida M. The fission yeast gamma-tubulin is essential for mitosis and is localized at microtubule organizing centers. J Cell Sci. 1991 Aug;99(Pt 4):693–700. doi: 10.1242/jcs.99.4.693. [DOI] [PubMed] [Google Scholar]
  15. Ikemoto S., Nakamura T., Kubo M., Shimoda C. S. pombe sporulation-specific coiled-coil protein Spo15p is localized to the spindle pole body and essential for its modification. J Cell Sci. 2000 Feb;113(Pt 3):545–554. doi: 10.1242/jcs.113.3.545. [DOI] [PubMed] [Google Scholar]
  16. Job Didier, Valiron Odile, Oakley Berl. Microtubule nucleation. Curr Opin Cell Biol. 2003 Feb;15(1):111–117. doi: 10.1016/s0955-0674(02)00003-0. [DOI] [PubMed] [Google Scholar]
  17. Jung M. K., Prigozhina N., Oakley C. E., Nogales E., Oakley B. R. Alanine-scanning mutagenesis of Aspergillus gamma-tubulin yields diverse and novel phenotypes. Mol Biol Cell. 2001 Jul;12(7):2119–2136. doi: 10.1091/mbc.12.7.2119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Knop M., Pereira G., Geissler S., Grein K., Schiebel E. The spindle pole body component Spc97p interacts with the gamma-tubulin of Saccharomyces cerevisiae and functions in microtubule organization and spindle pole body duplication. EMBO J. 1997 Apr 1;16(7):1550–1564. doi: 10.1093/emboj/16.7.1550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Knop M., Schiebel E. Receptors determine the cellular localization of a gamma-tubulin complex and thereby the site of microtubule formation. EMBO J. 1998 Jul 15;17(14):3952–3967. doi: 10.1093/emboj/17.14.3952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Knop M., Schiebel E. Spc98p and Spc97p of the yeast gamma-tubulin complex mediate binding to the spindle pole body via their interaction with Spc110p. EMBO J. 1997 Dec 1;16(23):6985–6995. doi: 10.1093/emboj/16.23.6985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Moritz M., Braunfeld M. B., Guénebaut V., Heuser J., Agard D. A. Structure of the gamma-tubulin ring complex: a template for microtubule nucleation. Nat Cell Biol. 2000 Jun;2(6):365–370. doi: 10.1038/35014058. [DOI] [PubMed] [Google Scholar]
  22. Moritz M., Braunfeld M. B., Sedat J. W., Alberts B., Agard D. A. Microtubule nucleation by gamma-tubulin-containing rings in the centrosome. Nature. 1995 Dec 7;378(6557):638–640. doi: 10.1038/378638a0. [DOI] [PubMed] [Google Scholar]
  23. Murphy S. M., Preble A. M., Patel U. K., O'Connell K. L., Dias D. P., Moritz M., Agard D., Stults J. T., Stearns T. GCP5 and GCP6: two new members of the human gamma-tubulin complex. Mol Biol Cell. 2001 Nov;12(11):3340–3352. doi: 10.1091/mbc.12.11.3340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Murphy S. M., Urbani L., Stearns T. The mammalian gamma-tubulin complex contains homologues of the yeast spindle pole body components spc97p and spc98p. J Cell Biol. 1998 May 4;141(3):663–674. doi: 10.1083/jcb.141.3.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nakaseko Y., Goshima G., Morishita J., Yanagida M. M phase-specific kinetochore proteins in fission yeast: microtubule-associating Dis1 and Mtc1 display rapid separation and segregation during anaphase. Curr Biol. 2001 Apr 17;11(8):537–549. doi: 10.1016/s0960-9822(01)00155-5. [DOI] [PubMed] [Google Scholar]
  26. Niwa O., Shimanuki M., Miki F. Telomere-led bouquet formation facilitates homologous chromosome pairing and restricts ectopic interaction in fission yeast meiosis. EMBO J. 2000 Jul 17;19(14):3831–3840. doi: 10.1093/emboj/19.14.3831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nogales E., Wolf S. G., Downing K. H. Structure of the alpha beta tubulin dimer by electron crystallography. Nature. 1998 Jan 8;391(6663):199–203. doi: 10.1038/34465. [DOI] [PubMed] [Google Scholar]
  28. Oegema K., Wiese C., Martin O. C., Milligan R. A., Iwamatsu A., Mitchison T. J., Zheng Y. Characterization of two related Drosophila gamma-tubulin complexes that differ in their ability to nucleate microtubules. J Cell Biol. 1999 Feb 22;144(4):721–733. doi: 10.1083/jcb.144.4.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Paluh J. L., Nogales E., Oakley B. R., McDonald K., Pidoux A. L., Cande W. Z. A mutation in gamma-tubulin alters microtubule dynamics and organization and is synthetically lethal with the kinesin-like protein pkl1p. Mol Biol Cell. 2000 Apr;11(4):1225–1239. doi: 10.1091/mbc.11.4.1225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Prigozhina N. L., Walker R. A., Oakley C. E., Oakley B. R. Gamma-tubulin and the C-terminal motor domain kinesin-like protein, KLPA, function in the establishment of spindle bipolarity in Aspergillus nidulans. Mol Biol Cell. 2001 Oct;12(10):3161–3174. doi: 10.1091/mbc.12.10.3161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schiebel E. gamma-tubulin complexes: binding to the centrosome, regulation and microtubule nucleation. Curr Opin Cell Biol. 2000 Feb;12(1):113–118. doi: 10.1016/s0955-0674(99)00064-2. [DOI] [PubMed] [Google Scholar]
  32. Stearns T., Evans L., Kirschner M. Gamma-tubulin is a highly conserved component of the centrosome. Cell. 1991 May 31;65(5):825–836. doi: 10.1016/0092-8674(91)90390-k. [DOI] [PubMed] [Google Scholar]
  33. Tange Y., Horio T., Shimanuki M., Ding D. Q., Hiraoka Y., Niwa O. A novel fission yeast gene, tht1+, is required for the fusion of nuclear envelopes during karyogamy. J Cell Biol. 1998 Jan 26;140(2):247–258. doi: 10.1083/jcb.140.2.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tange Yoshie, Hirata Aiko, Niwa Osami. An evolutionarily conserved fission yeast protein, Ned1, implicated in normal nuclear morphology and chromosome stability, interacts with Dis3, Pim1/RCC1 and an essential nucleoporin. J Cell Sci. 2002 Nov 15;115(Pt 22):4375–4385. doi: 10.1242/jcs.00135. [DOI] [PubMed] [Google Scholar]
  35. Tomlin Gregory C., Morrell Jennifer L., Gould Kathleen L. The spindle pole body protein Cdc11p links Sid4p to the fission yeast septation initiation network. Mol Biol Cell. 2002 Apr;13(4):1203–1214. doi: 10.1091/mbc.01-09-0455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Troxell C. L., Sweezy M. A., West R. R., Reed K. D., Carson B. D., Pidoux A. L., Cande W. Z., McIntosh J. R. pkl1(+)and klp2(+): Two kinesins of the Kar3 subfamily in fission yeast perform different functions in both mitosis and meiosis. Mol Biol Cell. 2001 Nov;12(11):3476–3488. doi: 10.1091/mbc.12.11.3476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Vardy L., Toda T. The fission yeast gamma-tubulin complex is required in G(1) phase and is a component of the spindle assembly checkpoint. EMBO J. 2000 Nov 15;19(22):6098–6111. doi: 10.1093/emboj/19.22.6098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. West Robert R., Malmstrom Terra, McIntosh J. Richard. Kinesins klp5(+) and klp6(+) are required for normal chromosome movement in mitosis. J Cell Sci. 2002 Mar 1;115(Pt 5):931–940. doi: 10.1242/jcs.115.5.931. [DOI] [PubMed] [Google Scholar]
  39. Woods A., Sherwin T., Sasse R., MacRae T. H., Baines A. J., Gull K. Definition of individual components within the cytoskeleton of Trypanosoma brucei by a library of monoclonal antibodies. J Cell Sci. 1989 Jul;93(Pt 3):491–500. doi: 10.1242/jcs.93.3.491. [DOI] [PubMed] [Google Scholar]
  40. Zheng Y., Wong M. L., Alberts B., Mitchison T. Nucleation of microtubule assembly by a gamma-tubulin-containing ring complex. Nature. 1995 Dec 7;378(6557):578–583. doi: 10.1038/378578a0. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES