Abstract
There are two naturally occurring functional alleles of the recombination hotspot cog, which is located 3.5 kb from the his-3 locus of Neurospora crassa. The presence of the cog+ allele in a cross significantly increases recombination in the his-3 region compared to a cross homozygous for the cog allele. Data obtained shortly after discovery of cog+ suggested that it was fully dominant to cog. However, a dominant cog+ conflicts with observations of hotspots in Saccharomyces cerevisiae and Schizosaccharomyces pombe, in which recombination is initiated independently of homolog interactions, and suggests recombination mechanisms may differ in Neurospora and yeast. We present evidence that cog alleles are codominant in effect on both allelic recombination in his-3 and crossing over between loci flanking his-3. In addition, we show that genetic background variation has at least a twofold effect on allelic recombination. We speculate that variation in genetic background, together with the complexities of recombination in crosses bearing close mutant alleles, accounts for the previous conclusion that cog+ is dominant to cog.
Full Text
The Full Text of this article is available as a PDF (251.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allers T., Lichten M. Differential timing and control of noncrossover and crossover recombination during meiosis. Cell. 2001 Jul 13;106(1):47–57. doi: 10.1016/s0092-8674(01)00416-0. [DOI] [PubMed] [Google Scholar]
- Angel T., Austin B., Catcheside D. G. Regulation of recombination at the his-3 locus in Neurospora crassa. Aust J Biol Sci. 1970 Dec;23(6):1229–1240. doi: 10.1071/bi9701229. [DOI] [PubMed] [Google Scholar]
- Baudat F., Nicolas A. Clustering of meiotic double-strand breaks on yeast chromosome III. Proc Natl Acad Sci U S A. 1997 May 13;94(10):5213–5218. doi: 10.1073/pnas.94.10.5213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borts R. H., Haber J. E. Length and distribution of meiotic gene conversion tracts and crossovers in Saccharomyces cerevisiae. Genetics. 1989 Sep;123(1):69–80. doi: 10.1093/genetics/123.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bowring F. J., Catcheside D. E. Gene conversion alone accounts for more than 90% of recombination events at the am locus of Neurospora crassa. Genetics. 1996 May;143(1):129–136. doi: 10.1093/genetics/143.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bowring F. J., Catcheside D. E. The initiation site for recombination cog is at the 3' end of the his-3 gene in Neurospora crassa. Mol Gen Genet. 1991 Oct;229(2):273–277. doi: 10.1007/BF00272166. [DOI] [PubMed] [Google Scholar]
- Catcheside D. G., Angel T. A histidine-3 mutant, in Neurospora crassa, due to an interchange. Aust J Biol Sci. 1974 Apr;27(2):219–229. doi: 10.1071/bi9740219. [DOI] [PubMed] [Google Scholar]
- Chakravarti A., Buetow K. H., Antonarakis S. E., Waber P. G., Boehm C. D., Kazazian H. H. Nonuniform recombination within the human beta-globin gene cluster. Am J Hum Genet. 1984 Nov;36(6):1239–1258. [PMC free article] [PubMed] [Google Scholar]
- Cullen M., Erlich H., Klitz W., Carrington M. Molecular mapping of a recombination hotspot located in the second intron of the human TAP2 locus. Am J Hum Genet. 1995 Jun;56(6):1350–1358. [PMC free article] [PubMed] [Google Scholar]
- De Massy B., Baudat F., Nicolas A. Initiation of recombination in Saccharomyces cerevisiae haploid meiosis. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11929–11933. doi: 10.1073/pnas.91.25.11929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dernburg A. F., McDonald K., Moulder G., Barstead R., Dresser M., Villeneuve A. M. Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell. 1998 Aug 7;94(3):387–398. doi: 10.1016/s0092-8674(00)81481-6. [DOI] [PubMed] [Google Scholar]
- Fox M. E., Smith G. R. Control of meiotic recombination in Schizosaccharomyces pombe. Prog Nucleic Acid Res Mol Biol. 1998;61:345–378. doi: 10.1016/s0079-6603(08)60831-4. [DOI] [PubMed] [Google Scholar]
- Gilbertson L. A., Stahl F. W. Initiation of meiotic recombination is independent of interhomologue interactions. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11934–11937. doi: 10.1073/pnas.91.25.11934. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grelon M., Vezon D., Gendrot G., Pelletier G. AtSPO11-1 is necessary for efficient meiotic recombination in plants. EMBO J. 2001 Feb 1;20(3):589–600. doi: 10.1093/emboj/20.3.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guillon Hélène, de Massy Bernard. An initiation site for meiotic crossing-over and gene conversion in the mouse. Nat Genet. 2002 Sep 16;32(2):296–299. doi: 10.1038/ng990. [DOI] [PubMed] [Google Scholar]
- Gutz H. Site Specific Induction of Gene Conversion in SCHIZOSACCHAROMYCES POMBE. Genetics. 1971 Nov;69(3):317–337. doi: 10.1093/genetics/69.3.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hilliker A. J., Harauz G., Reaume A. G., Gray M., Clark S. H., Chovnick A. Meiotic gene conversion tract length distribution within the rosy locus of Drosophila melanogaster. Genetics. 1994 Aug;137(4):1019–1026. doi: 10.1093/genetics/137.4.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunter N., Kleckner N. The single-end invasion: an asymmetric intermediate at the double-strand break to double-holliday junction transition of meiotic recombination. Cell. 2001 Jul 13;106(1):59–70. doi: 10.1016/s0092-8674(01)00430-5. [DOI] [PubMed] [Google Scholar]
- Janson M., Larsson C., Werelius B., Jones C., Glaser T., Nakamura Y., Jones C. P., Nordenskjöld M. Detailed physical map of human chromosomal region 11q12-13 shows high meiotic recombination rate around the MEN1 locus. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10609–10613. doi: 10.1073/pnas.88.23.10609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jeffreys A. J., Kauppi L., Neumann R. Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat Genet. 2001 Oct;29(2):217–222. doi: 10.1038/ng1001-217. [DOI] [PubMed] [Google Scholar]
- Jeffreys A. J., Murray J., Neumann R. High-resolution mapping of crossovers in human sperm defines a minisatellite-associated recombination hotspot. Mol Cell. 1998 Aug;2(2):267–273. doi: 10.1016/s1097-2765(00)80138-0. [DOI] [PubMed] [Google Scholar]
- Jeffreys Alec J., Neumann Rita. Reciprocal crossover asymmetry and meiotic drive in a human recombination hot spot. Nat Genet. 2002 Jun 24;31(3):267–271. doi: 10.1038/ng910. [DOI] [PubMed] [Google Scholar]
- Keeney S., Giroux C. N., Kleckner N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell. 1997 Feb 7;88(3):375–384. doi: 10.1016/s0092-8674(00)81876-0. [DOI] [PubMed] [Google Scholar]
- Lichten M., Goldman A. S. Meiotic recombination hotspots. Annu Rev Genet. 1995;29:423–444. doi: 10.1146/annurev.ge.29.120195.002231. [DOI] [PubMed] [Google Scholar]
- McKim K. S., Hayashi-Hagihara A. mei-W68 in Drosophila melanogaster encodes a Spo11 homolog: evidence that the mechanism for initiating meiotic recombination is conserved. Genes Dev. 1998 Sep 15;12(18):2932–2942. doi: 10.1101/gad.12.18.2932. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchell M. B. ABERRANT RECOMBINATION OF PYRIDOXINE MUTANTS OF Neurospora. Proc Natl Acad Sci U S A. 1955 Apr 15;41(4):215–220. doi: 10.1073/pnas.41.4.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Modrich P., Lahue R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem. 1996;65:101–133. doi: 10.1146/annurev.bi.65.070196.000533. [DOI] [PubMed] [Google Scholar]
- Nassif N., Penney J., Pal S., Engels W. R., Gloor G. B. Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Mol Cell Biol. 1994 Mar;14(3):1613–1625. doi: 10.1128/mcb.14.3.1613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicolas A., Treco D., Schultes N. P., Szostak J. W. An initiation site for meiotic gene conversion in the yeast Saccharomyces cerevisiae. Nature. 1989 Mar 2;338(6210):35–39. doi: 10.1038/338035a0. [DOI] [PubMed] [Google Scholar]
- Olive L. S. ABERRANT TETRADS IN SORDARIA FIMICOLA. Proc Natl Acad Sci U S A. 1959 May;45(5):727–732. doi: 10.1073/pnas.45.5.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oudet C., Hanauer A., Clemens P., Caskey T., Mandel J. L. Two hot spots of recombination in the DMD gene correlate with the deletion prone regions. Hum Mol Genet. 1992 Nov;1(8):599–603. doi: 10.1093/hmg/1.8.599. [DOI] [PubMed] [Google Scholar]
- Overton L. K., Dubins J. S., de Serres F. J. Molecular and classical genetic analyses of his-3 mutants of Neurospora crassa. I. Tests for allelic complementation and specific revertibility. Mutat Res. 1989 Oct;214(2):267–283. doi: 10.1016/0027-5107(89)90171-1. [DOI] [PubMed] [Google Scholar]
- Ponticelli A. S., Sena E. P., Smith G. R. Genetic and physical analysis of the M26 recombination hotspot of Schizosaccharomyces pombe. Genetics. 1988 Jul;119(3):491–497. doi: 10.1093/genetics/119.3.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pâques F., Haber J. E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 1999 Jun;63(2):349–404. doi: 10.1128/mmbr.63.2.349-404.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Romanienko P. J., Camerini-Otero R. D. Cloning, characterization, and localization of mouse and human SPO11. Genomics. 1999 Oct 15;61(2):156–169. doi: 10.1006/geno.1999.5955. [DOI] [PubMed] [Google Scholar]
- Stadler D. R. THE RELATIONSHIP OF GENE CONVERSION TO CROSSING OVER IN NEUROSPORA. Proc Natl Acad Sci U S A. 1959 Nov;45(11):1625–1629. doi: 10.1073/pnas.45.11.1625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sun H., Treco D., Szostak J. W. Extensive 3'-overhanging, single-stranded DNA associated with the meiosis-specific double-strand breaks at the ARG4 recombination initiation site. Cell. 1991 Mar 22;64(6):1155–1161. doi: 10.1016/0092-8674(91)90270-9. [DOI] [PubMed] [Google Scholar]
- Szostak J. W., Orr-Weaver T. L., Rothstein R. J., Stahl F. W. The double-strand-break repair model for recombination. Cell. 1983 May;33(1):25–35. doi: 10.1016/0092-8674(83)90331-8. [DOI] [PubMed] [Google Scholar]
- Xu L., Kleckner N. Sequence non-specific double-strand breaks and interhomolog interactions prior to double-strand break formation at a meiotic recombination hot spot in yeast. EMBO J. 1995 Oct 16;14(20):5115–5128. doi: 10.1002/j.1460-2075.1995.tb00194.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yeadon P. J., Catcheside D. E. Long, interrupted conversion tracts initiated by cog in Neurospora crassa. Genetics. 1998 Jan;148(1):113–122. doi: 10.1093/genetics/148.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yeadon P. J., Catcheside D. E. Polymorphism around cog extends into adjacent structural genes. Curr Genet. 1999 Jul;35(6):631–637. doi: 10.1007/s002940050462. [DOI] [PubMed] [Google Scholar]
- Yeadon P. Jane, Koh L. Y., Bowring F. J., Rasmussen J. P., Catcheside D. E. A. Recombination at his-3 in Neurospora declines exponentially with distance from the initiator, cog. Genetics. 2002 Oct;162(2):747–753. doi: 10.1093/genetics/162.2.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yip S. P., Lovegrove J. U., Rana N. A., Hopkinson D. A., Whitehouse D. B. Mapping recombination hotspots in human phosphoglucomutase (PGM1). Hum Mol Genet. 1999 Sep;8(9):1699–1706. doi: 10.1093/hmg/8.9.1699. [DOI] [PubMed] [Google Scholar]
- Young Jennifer A., Schreckhise Randall W., Steiner Walter W., Smith Gerald R. Meiotic recombination remote from prominent DNA break sites in S. pombe. Mol Cell. 2002 Feb;9(2):253–263. doi: 10.1016/s1097-2765(02)00452-5. [DOI] [PubMed] [Google Scholar]
- Zahn-Zabal M., Lehmann E., Kohli J. Hot spots of recombination in fission yeast: inactivation of the M26 hot spot by deletion of the ade6 promoter and the novel hotspot ura4-aim. Genetics. 1995 Jun;140(2):469–478. doi: 10.1093/genetics/140.2.469. [DOI] [PMC free article] [PubMed] [Google Scholar]