Skip to main content
Genetics logoLink to Genetics
. 2004 Jul;167(3):1123–1132. doi: 10.1534/genetics.104.026674

Redundant roles for histone H3 N-terminal lysine residues in subtelomeric gene repression in Saccharomyces cerevisiae.

Amy M Martin 1, Derek J Pouchnik 1, Jennifer L Walker 1, John J Wyrick 1
PMCID: PMC1470950  PMID: 15280228

Abstract

The transcription of genes located in subtelomeric regions of yeast chromosomes is repressed relative to the rest of the genome. This repression requires wild-type nucleosome levels but not the telomere silencing factors Sir2, Sir3, Sir4, and Rap1. Subtelomeric heterochromatin is characterized by the absence of acetylation or methylation of histone H3 lysine residues, but it is not known whether histone H3 hypoacetylation or hypomethylation is a prerequisite for the establishment of subtelomeric heterochromatin. We have systematically mutated the N-terminal tails of histone H3 and H4 in Saccharomyces cerevisiae and characterized the effects each mutant has on genome-wide expression. Our results show that subtelomeric transcriptional repression is dependent on the histone H3 N-terminal domain, but not the histone H4 N-terminal domain. Mutating lysine-4, lysine-9, lysine-14, lysine-18, lysine-23, and lysine-27 to glycine in histone H3 is also sufficient to significantly reduce subtelomeric gene repression. Individual histone H3 lysine mutations, however, have little effect on subtelomeric gene repression or genome-wide expression, indicating that these six lysine residues have redundant functions. We propose that acetylation and methylation of histone H3 N-terminal lysine residues act as redundant mechanisms to demarcate regions of euchromatin from heterochromatin.

Full Text

The Full Text of this article is available as a PDF (413.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aparicio O. M., Billington B. L., Gottschling D. E. Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell. 1991 Sep 20;66(6):1279–1287. doi: 10.1016/0092-8674(91)90049-5. [DOI] [PubMed] [Google Scholar]
  2. Bernstein B. E., Tong J. K., Schreiber S. L. Genomewide studies of histone deacetylase function in yeast. Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13708–13713. doi: 10.1073/pnas.250477697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bernstein Bradley E., Humphrey Emily L., Erlich Rachel L., Schneider Robert, Bouman Peter, Liu Jun S., Kouzarides Tony, Schreiber Stuart L. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc Natl Acad Sci U S A. 2002 Jun 11;99(13):8695–8700. doi: 10.1073/pnas.082249499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brachmann C. B., Davies A., Cost G. J., Caputo E., Li J., Hieter P., Boeke J. D. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast. 1998 Jan 30;14(2):115–132. doi: 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  5. Briggs S. D., Bryk M., Strahl B. D., Cheung W. L., Davie J. K., Dent S. Y., Winston F., Allis C. D. Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev. 2001 Dec 15;15(24):3286–3295. doi: 10.1101/gad.940201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bryk Mary, Briggs Scott D., Strahl Brian D., Curcio M. Joan, Allis C. David, Winston Fred. Evidence that Set1, a factor required for methylation of histone H3, regulates rDNA silencing in S. cerevisiae by a Sir2-independent mechanism. Curr Biol. 2002 Jan 22;12(2):165–170. doi: 10.1016/s0960-9822(01)00652-2. [DOI] [PubMed] [Google Scholar]
  7. Carmen Andrew A., Milne Lisa, Grunstein Michael. Acetylation of the yeast histone H4 N terminus regulates its binding to heterochromatin protein SIR3. J Biol Chem. 2001 Nov 19;277(7):4778–4781. doi: 10.1074/jbc.M110532200. [DOI] [PubMed] [Google Scholar]
  8. Durrin L. K., Mann R. K., Kayne P. S., Grunstein M. Yeast histone H4 N-terminal sequence is required for promoter activation in vivo. Cell. 1991 Jun 14;65(6):1023–1031. doi: 10.1016/0092-8674(91)90554-c. [DOI] [PubMed] [Google Scholar]
  9. Grewal S. I. Transcriptional silencing in fission yeast. J Cell Physiol. 2000 Sep;184(3):311–318. doi: 10.1002/1097-4652(200009)184:3<311::AID-JCP4>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
  10. Grewal Shiv I. S., Moazed Danesh. Heterochromatin and epigenetic control of gene expression. Science. 2003 Aug 8;301(5634):798–802. doi: 10.1126/science.1086887. [DOI] [PubMed] [Google Scholar]
  11. Holstege F. C., Jennings E. G., Wyrick J. J., Lee T. I., Hengartner C. J., Green M. R., Golub T. R., Lander E. S., Young R. A. Dissecting the regulatory circuitry of a eukaryotic genome. Cell. 1998 Nov 25;95(5):717–728. doi: 10.1016/s0092-8674(00)81641-4. [DOI] [PubMed] [Google Scholar]
  12. Horn Peter J., Peterson Craig L. Molecular biology. Chromatin higher order folding--wrapping up transcription. Science. 2002 Sep 13;297(5588):1824–1827. doi: 10.1126/science.1074200. [DOI] [PubMed] [Google Scholar]
  13. Hughes T. R., Marton M. J., Jones A. R., Roberts C. J., Stoughton R., Armour C. D., Bennett H. A., Coffey E., Dai H., He Y. D. Functional discovery via a compendium of expression profiles. Cell. 2000 Jul 7;102(1):109–126. doi: 10.1016/s0092-8674(00)00015-5. [DOI] [PubMed] [Google Scholar]
  14. Iizuka Masayoshi, Smith M. Mitchell. Functional consequences of histone modifications. Curr Opin Genet Dev. 2003 Apr;13(2):154–160. doi: 10.1016/s0959-437x(03)00020-0. [DOI] [PubMed] [Google Scholar]
  15. Imai S., Armstrong C. M., Kaeberlein M., Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000 Feb 17;403(6771):795–800. doi: 10.1038/35001622. [DOI] [PubMed] [Google Scholar]
  16. Kimura Akatsuki, Umehara Takashi, Horikoshi Masami. Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing. Nat Genet. 2002 Oct 15;32(3):370–377. doi: 10.1038/ng993. [DOI] [PubMed] [Google Scholar]
  17. Kristjuhan Arnold, Wittschieben Birgitte O., Walker Jane, Roberts Douglas, Cairns Bradley R., Svejstrup Jesper Q. Spreading of Sir3 protein in cells with severe histone H3 hypoacetylation. Proc Natl Acad Sci U S A. 2003 Jun 9;100(13):7551–7556. doi: 10.1073/pnas.1332299100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Krogan Nevan J., Dover Jim, Khorrami Shahram, Greenblatt Jack F., Schneider Jessica, Johnston Mark, Shilatifard Ali. COMPASS, a histone H3 (Lysine 4) methyltransferase required for telomeric silencing of gene expression. J Biol Chem. 2002 Jan 22;277(13):10753–10755. doi: 10.1074/jbc.C200023200. [DOI] [PubMed] [Google Scholar]
  19. Lachner Monika, Jenuwein Thomas. The many faces of histone lysine methylation. Curr Opin Cell Biol. 2002 Jun;14(3):286–298. doi: 10.1016/s0955-0674(02)00335-6. [DOI] [PubMed] [Google Scholar]
  20. Landry J., Sutton A., Tafrov S. T., Heller R. C., Stebbins J., Pillus L., Sternglanz R. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci U S A. 2000 May 23;97(11):5807–5811. doi: 10.1073/pnas.110148297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lee T. I., Causton H. C., Holstege F. C., Shen W. C., Hannett N., Jennings E. G., Winston F., Green M. R., Young R. A. Redundant roles for the TFIID and SAGA complexes in global transcription. Nature. 2000 Jun 8;405(6787):701–704. doi: 10.1038/35015104. [DOI] [PubMed] [Google Scholar]
  22. Luo Kunheng, Vega-Palas Miguel A., Grunstein Michael. Rap1-Sir4 binding independent of other Sir, yKu, or histone interactions initiates the assembly of telomeric heterochromatin in yeast. Genes Dev. 2002 Jun 15;16(12):1528–1539. doi: 10.1101/gad.988802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lustig A. J. Mechanisms of silencing in Saccharomyces cerevisiae. Curr Opin Genet Dev. 1998 Apr;8(2):233–239. doi: 10.1016/s0959-437x(98)80146-9. [DOI] [PubMed] [Google Scholar]
  24. Mann R. K., Grunstein M. Histone H3 N-terminal mutations allow hyperactivation of the yeast GAL1 gene in vivo. EMBO J. 1992 Sep;11(9):3297–3306. doi: 10.1002/j.1460-2075.1992.tb05408.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Moazed D. Common themes in mechanisms of gene silencing. Mol Cell. 2001 Sep;8(3):489–498. doi: 10.1016/s1097-2765(01)00340-9. [DOI] [PubMed] [Google Scholar]
  26. Morgan B. A., Mittman B. A., Smith M. M. The highly conserved N-terminal domains of histones H3 and H4 are required for normal cell cycle progression. Mol Cell Biol. 1991 Aug;11(8):4111–4120. doi: 10.1128/mcb.11.8.4111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Narlikar Geeta J., Fan Hua-Ying, Kingston Robert E. Cooperation between complexes that regulate chromatin structure and transcription. Cell. 2002 Feb 22;108(4):475–487. doi: 10.1016/s0092-8674(02)00654-2. [DOI] [PubMed] [Google Scholar]
  28. Nislow C., Ray E., Pillus L. SET1, a yeast member of the trithorax family, functions in transcriptional silencing and diverse cellular processes. Mol Biol Cell. 1997 Dec;8(12):2421–2436. doi: 10.1091/mbc.8.12.2421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Richards Eric J., Elgin Sarah C. R. Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects. Cell. 2002 Feb 22;108(4):489–500. doi: 10.1016/s0092-8674(02)00644-x. [DOI] [PubMed] [Google Scholar]
  30. Robyr Daniel, Suka Yuko, Xenarios Ioannis, Kurdistani Siavash K., Wang Amy, Suka Noriyuki, Grunstein Michael. Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. Cell. 2002 May 17;109(4):437–446. doi: 10.1016/s0092-8674(02)00746-8. [DOI] [PubMed] [Google Scholar]
  31. Roguev A., Schaft D., Shevchenko A., Pijnappel W. W., Wilm M., Aasland R., Stewart A. F. The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J. 2001 Dec 17;20(24):7137–7148. doi: 10.1093/emboj/20.24.7137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Roth S. Y., Denu J. M., Allis C. D. Histone acetyltransferases. Annu Rev Biochem. 2001;70:81–120. doi: 10.1146/annurev.biochem.70.1.81. [DOI] [PubMed] [Google Scholar]
  33. Sabet Nevin, Tong Fumin, Madigan James P., Volo Sam, Smith M. Mitchell, Morse Randall H. Global and specific transcriptional repression by the histone H3 amino terminus in yeast. Proc Natl Acad Sci U S A. 2003 Mar 20;100(7):4084–4089. doi: 10.1073/pnas.0637524100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schreiber Stuart L., Bernstein Bradley E. Signaling network model of chromatin. Cell. 2002 Dec 13;111(6):771–778. doi: 10.1016/s0092-8674(02)01196-0. [DOI] [PubMed] [Google Scholar]
  35. Sikorski R. S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Suka N., Suka Y., Carmen A. A., Wu J., Grunstein M. Highly specific antibodies determine histone acetylation site usage in yeast heterochromatin and euchromatin. Mol Cell. 2001 Aug;8(2):473–479. doi: 10.1016/s1097-2765(01)00301-x. [DOI] [PubMed] [Google Scholar]
  37. Suka Noriyuki, Luo Kunheng, Grunstein Michael. Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin. Nat Genet. 2002 Oct 15;32(3):378–383. doi: 10.1038/ng1017. [DOI] [PubMed] [Google Scholar]
  38. Thompson J. S., Ling X., Grunstein M. Histone H3 amino terminus is required for telomeric and silent mating locus repression in yeast. Nature. 1994 May 19;369(6477):245–247. doi: 10.1038/369245a0. [DOI] [PubMed] [Google Scholar]
  39. Wodicka L., Dong H., Mittmann M., Ho M. H., Lockhart D. J. Genome-wide expression monitoring in Saccharomyces cerevisiae. Nat Biotechnol. 1997 Dec;15(13):1359–1367. doi: 10.1038/nbt1297-1359. [DOI] [PubMed] [Google Scholar]
  40. Wolffe A. P., Hayes J. J. Chromatin disruption and modification. Nucleic Acids Res. 1999 Feb 1;27(3):711–720. doi: 10.1093/nar/27.3.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wyrick J. J., Holstege F. C., Jennings E. G., Causton H. C., Shore D., Grunstein M., Lander E. S., Young R. A. Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast. Nature. 1999 Nov 25;402(6760):418–421. doi: 10.1038/46567. [DOI] [PubMed] [Google Scholar]
  42. Wyrick John J., Young Richard A. Deciphering gene expression regulatory networks. Curr Opin Genet Dev. 2002 Apr;12(2):130–136. doi: 10.1016/s0959-437x(02)00277-0. [DOI] [PubMed] [Google Scholar]
  43. van Leeuwen Fred, Gottschling Daniel E. Genome-wide histone modifications: gaining specificity by preventing promiscuity. Curr Opin Cell Biol. 2002 Dec;14(6):756–762. doi: 10.1016/s0955-0674(02)00393-9. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES