Abstract
We report here that WASP and Ena/VASP family proteins play overlapping roles in C. elegans morphogenesis and neuronal cell migration. Specifically, these studies demonstrate that UNC-34/Ena plays a role in morphogenesis that is revealed only in the absence of WSP-1 function and that WSP-1 has a role in neuronal cell migration that is revealed only in the absence of UNC-34/Ena activity. To identify additional genes that act in parallel to unc-34/ena during morphogenesis, we performed a screen for synthetic lethals in an unc-34 null mutant background utilizing an RNAi feeding approach. To our knowledge, this is the first reported RNAi-based screen for genetic interactors. As a result of this screen, we identified a second C. elegans WASP family protein, wve-1, that is most homologous to SCAR/WAVE proteins. Animals with impaired wve-1 function display defects in gastrulation, fail to undergo proper morphogenesis, and exhibit defects in neuronal cell migrations and axon outgrowth. Reducing wve-1 levels in either unc-34/ena or wsp-1 mutant backgrounds also leads to a significant enhancement of the gastrulation and morphogenesis defects. Thus, unc-34/ena, wsp-1, and wve-1 play overlapping roles during embryogenesis and unc-34/ena and wsp-1 play overlapping roles in neuronal cell migration. These observations show that WASP and Ena/VASP proteins can compensate for each other in vivo and provide the first demonstration of a role for Ena/VASP proteins in gastrulation and morphogenesis. In addition, our results provide the first example of an in vivo role for WASP family proteins in neuronal cell migrations and cytokinesis in metazoans.
Full Text
The Full Text of this article is available as a PDF (319.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahern-Djamali S. M., Comer A. R., Bachmann C., Kastenmeier A. S., Reddy S. K., Beckerle M. C., Walter U., Hoffmann F. M. Mutations in Drosophila enabled and rescue by human vasodilator-stimulated phosphoprotein (VASP) indicate important functional roles for Ena/VASP homology domain 1 (EVH1) and EVH2 domains. Mol Biol Cell. 1998 Aug;9(8):2157–2171. doi: 10.1091/mbc.9.8.2157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amann K. J., Pollard T. D. The Arp2/3 complex nucleates actin filament branches from the sides of pre-existing filaments. Nat Cell Biol. 2001 Mar;3(3):306–310. doi: 10.1038/35060104. [DOI] [PubMed] [Google Scholar]
- Aspenström P., Lindberg U., Hall A. Two GTPases, Cdc42 and Rac, bind directly to a protein implicated in the immunodeficiency disorder Wiskott-Aldrich syndrome. Curr Biol. 1996 Jan 1;6(1):70–75. doi: 10.1016/s0960-9822(02)00423-2. [DOI] [PubMed] [Google Scholar]
- Bachmann C., Fischer L., Walter U., Reinhard M. The EVH2 domain of the vasodilator-stimulated phosphoprotein mediates tetramerization, F-actin binding, and actin bundle formation. J Biol Chem. 1999 Aug 13;274(33):23549–23557. doi: 10.1074/jbc.274.33.23549. [DOI] [PubMed] [Google Scholar]
- Badour Karen, Zhang Jinyi, Siminovitch Katherine A. The Wiskott-Aldrich syndrome protein: forging the link between actin and cell activation. Immunol Rev. 2003 Apr;192:98–112. doi: 10.1034/j.1600-065x.2003.00031.x. [DOI] [PubMed] [Google Scholar]
- Bashaw G. J., Kidd T., Murray D., Pawson T., Goodman C. S. Repulsive axon guidance: Abelson and Enabled play opposing roles downstream of the roundabout receptor. Cell. 2000 Jun 23;101(7):703–715. doi: 10.1016/s0092-8674(00)80883-1. [DOI] [PubMed] [Google Scholar]
- Bear James E., Svitkina Tatyana M., Krause Matthias, Schafer Dorothy A., Loureiro Joseph J., Strasser Geraldine A., Maly Ivan V., Chaga Oleg Y., Cooper John A., Borisy Gary G. Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell. 2002 May 17;109(4):509–521. doi: 10.1016/s0092-8674(02)00731-6. [DOI] [PubMed] [Google Scholar]
- Blanchoin L., Amann K. J., Higgs H. N., Marchand J. B., Kaiser D. A., Pollard T. D. Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins. Nature. 2000 Apr 27;404(6781):1007–1011. doi: 10.1038/35010008. [DOI] [PubMed] [Google Scholar]
- Carlier Marie-France, Le Clainche Christophe, Wiesner Sebastian, Pantaloni Dominique. Actin-based motility: from molecules to movement. Bioessays. 2003 Apr;25(4):336–345. doi: 10.1002/bies.10257. [DOI] [PubMed] [Google Scholar]
- Castellano F., Le Clainche C., Patin D., Carlier M. F., Chavrier P. A WASp-VASP complex regulates actin polymerization at the plasma membrane. EMBO J. 2001 Oct 15;20(20):5603–5614. doi: 10.1093/emboj/20.20.5603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chin-Sang I. D., Chisholm A. D. Form of the worm: genetics of epidermal morphogenesis in C. elegans. Trends Genet. 2000 Dec;16(12):544–551. doi: 10.1016/s0168-9525(00)02143-0. [DOI] [PubMed] [Google Scholar]
- Chin-Sang I. D., George S. E., Ding M., Moseley S. L., Lynch A. S., Chisholm A. D. The ephrin VAB-2/EFN-1 functions in neuronal signaling to regulate epidermal morphogenesis in C. elegans. Cell. 1999 Dec 23;99(7):781–790. doi: 10.1016/s0092-8674(00)81675-x. [DOI] [PubMed] [Google Scholar]
- Chin-Sang Ian D., Moseley Sarah L., Ding Mei, Harrington Robert J., George Sean E., Chisholm Andrew D. The divergent C. elegans ephrin EFN-4 functions inembryonic morphogenesis in a pathway independent of the VAB-1 Eph receptor. Development. 2002 Dec;129(23):5499–5510. doi: 10.1242/dev.00122. [DOI] [PubMed] [Google Scholar]
- Costa M., Raich W., Agbunag C., Leung B., Hardin J., Priess J. R. A putative catenin-cadherin system mediates morphogenesis of the Caenorhabditis elegans embryo. J Cell Biol. 1998 Apr 6;141(1):297–308. doi: 10.1083/jcb.141.1.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Desai C., Garriga G., McIntire S. L., Horvitz H. R. A genetic pathway for the development of the Caenorhabditis elegans HSN motor neurons. Nature. 1988 Dec 15;336(6200):638–646. doi: 10.1038/336638a0. [DOI] [PubMed] [Google Scholar]
- Forrester W. C., Garriga G. Genes necessary for C. elegans cell and growth cone migrations. Development. 1997 May;124(9):1831–1843. doi: 10.1242/dev.124.9.1831. [DOI] [PubMed] [Google Scholar]
- Fraser A. G., Kamath R. S., Zipperlen P., Martinez-Campos M., Sohrmann M., Ahringer J. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature. 2000 Nov 16;408(6810):325–330. doi: 10.1038/35042517. [DOI] [PubMed] [Google Scholar]
- George S. E., Simokat K., Hardin J., Chisholm A. D. The VAB-1 Eph receptor tyrosine kinase functions in neural and epithelial morphogenesis in C. elegans. Cell. 1998 Mar 6;92(5):633–643. doi: 10.1016/s0092-8674(00)81131-9. [DOI] [PubMed] [Google Scholar]
- Gertler F. B., Comer A. R., Juang J. L., Ahern S. M., Clark M. J., Liebl E. C., Hoffmann F. M. enabled, a dosage-sensitive suppressor of mutations in the Drosophila Abl tyrosine kinase, encodes an Abl substrate with SH3 domain-binding properties. Genes Dev. 1995 Mar 1;9(5):521–533. doi: 10.1101/gad.9.5.521. [DOI] [PubMed] [Google Scholar]
- Gertler F. B., Doctor J. S., Hoffmann F. M. Genetic suppression of mutations in the Drosophila abl proto-oncogene homolog. Science. 1990 May 18;248(4957):857–860. doi: 10.1126/science.2188361. [DOI] [PubMed] [Google Scholar]
- Gertler F. B., Niebuhr K., Reinhard M., Wehland J., Soriano P. Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics. Cell. 1996 Oct 18;87(2):227–239. doi: 10.1016/s0092-8674(00)81341-0. [DOI] [PubMed] [Google Scholar]
- Harrington Robert J., Gutch Michael J., Hengartner Michael O., Tonks Nicholas K., Chisholm Andrew D. The C. elegans LAR-like receptor tyrosine phosphatase PTP-3 and the VAB-1 Eph receptor tyrosine kinase have partly redundant functions in morphogenesis. Development. 2002 May;129(9):2141–2153. doi: 10.1242/dev.129.9.2141. [DOI] [PubMed] [Google Scholar]
- Kwiatkowski Adam V., Gertler Frank B., Loureiro Joseph J. Function and regulation of Ena/VASP proteins. Trends Cell Biol. 2003 Jul;13(7):386–392. doi: 10.1016/s0962-8924(03)00130-2. [DOI] [PubMed] [Google Scholar]
- Lanier L. M., Gates M. A., Witke W., Menzies A. S., Wehman A. M., Macklis J. D., Kwiatkowski D., Soriano P., Gertler F. B. Mena is required for neurulation and commissure formation. Neuron. 1999 Feb;22(2):313–325. doi: 10.1016/s0896-6273(00)81092-2. [DOI] [PubMed] [Google Scholar]
- Laurent V., Loisel T. P., Harbeck B., Wehman A., Gröbe L., Jockusch B. M., Wehland J., Gertler F. B., Carlier M. F. Role of proteins of the Ena/VASP family in actin-based motility of Listeria monocytogenes. J Cell Biol. 1999 Mar 22;144(6):1245–1258. doi: 10.1083/jcb.144.6.1245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McIntire S. L., Garriga G., White J., Jacobson D., Horvitz H. R. Genes necessary for directed axonal elongation or fasciculation in C. elegans. Neuron. 1992 Feb;8(2):307–322. doi: 10.1016/0896-6273(92)90297-q. [DOI] [PubMed] [Google Scholar]
- Miki H., Nonoyama S., Zhu Q., Aruffo A., Ochs H. D., Takenawa T. Tyrosine kinase signaling regulates Wiskott-Aldrich syndrome protein function, which is essential for megakaryocyte differentiation. Cell Growth Differ. 1997 Feb;8(2):195–202. [PubMed] [Google Scholar]
- Nance Jeremy, Priess James R. Cell polarity and gastrulation in C. elegans. Development. 2002 Jan;129(2):387–397. doi: 10.1242/dev.129.2.387. [DOI] [PubMed] [Google Scholar]
- Niebuhr K., Ebel F., Frank R., Reinhard M., Domann E., Carl U. D., Walter U., Gertler F. B., Wehland J., Chakraborty T. A novel proline-rich motif present in ActA of Listeria monocytogenes and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in the Ena/VASP family. EMBO J. 1997 Sep 1;16(17):5433–5444. doi: 10.1093/emboj/16.17.5433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pantaloni D., Boujemaa R., Didry D., Gounon P., Carlier M. F. The Arp2/3 complex branches filament barbed ends: functional antagonism with capping proteins. Nat Cell Biol. 2000 Jul;2(7):385–391. doi: 10.1038/35017011. [DOI] [PubMed] [Google Scholar]
- Pelham Robert J., Chang Fred. Actin dynamics in the contractile ring during cytokinesis in fission yeast. Nature. 2002 Sep 5;419(6902):82–86. doi: 10.1038/nature00999. [DOI] [PubMed] [Google Scholar]
- Pollard T. D., Blanchoin L., Mullins R. D. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct. 2000;29:545–576. doi: 10.1146/annurev.biophys.29.1.545. [DOI] [PubMed] [Google Scholar]
- Prehoda K. E., Lee D. J., Lim W. A. Structure of the enabled/VASP homology 1 domain-peptide complex: a key component in the spatial control of actin assembly. Cell. 1999 May 14;97(4):471–480. doi: 10.1016/s0092-8674(00)80757-6. [DOI] [PubMed] [Google Scholar]
- Priess J. R., Hirsh D. I. Caenorhabditis elegans morphogenesis: the role of the cytoskeleton in elongation of the embryo. Dev Biol. 1986 Sep;117(1):156–173. doi: 10.1016/0012-1606(86)90358-1. [DOI] [PubMed] [Google Scholar]
- Quintin S., Michaux G., McMahon L., Gansmuller A., Labouesse M. The Caenorhabditis elegans gene lin-26 can trigger epithelial differentiation without conferring tissue specificity. Dev Biol. 2001 Jul 15;235(2):410–421. doi: 10.1006/dbio.2001.0294. [DOI] [PubMed] [Google Scholar]
- Rajagopalan Srividya, Wachtler Volker, Balasubramanian Mohan. Cytokinesis in fission yeast: a story of rings, rafts and walls. Trends Genet. 2003 Jul;19(7):403–408. doi: 10.1016/S0168-9525(03)00149-5. [DOI] [PubMed] [Google Scholar]
- Ramesh N., Antón I. M., Hartwig J. H., Geha R. S. WIP, a protein associated with wiskott-aldrich syndrome protein, induces actin polymerization and redistribution in lymphoid cells. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14671–14676. doi: 10.1073/pnas.94.26.14671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reinhard M., Giehl K., Abel K., Haffner C., Jarchau T., Hoppe V., Jockusch B. M., Walter U. The proline-rich focal adhesion and microfilament protein VASP is a ligand for profilins. EMBO J. 1995 Apr 18;14(8):1583–1589. doi: 10.1002/j.1460-2075.1995.tb07146.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reinhard M., Jarchau T., Walter U. Actin-based motility: stop and go with Ena/VASP proteins. Trends Biochem Sci. 2001 Apr;26(4):243–249. doi: 10.1016/s0968-0004(00)01785-0. [DOI] [PubMed] [Google Scholar]
- Rivero-Lezcano O. M., Marcilla A., Sameshima J. H., Robbins K. C. Wiskott-Aldrich syndrome protein physically associates with Nck through Src homology 3 domains. Mol Cell Biol. 1995 Oct;15(10):5725–5731. doi: 10.1128/mcb.15.10.5725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rohatgi R., Ho H. Y., Kirschner M. W. Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4, 5-bisphosphate. J Cell Biol. 2000 Sep 18;150(6):1299–1310. doi: 10.1083/jcb.150.6.1299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sawa Mariko, Suetsugu Shiro, Sugimoto Asako, Miki Hiroaki, Yamamoto Masayuki, Takenawa Tadaomi. Essential role of the C. elegans Arp2/3 complex in cell migration during ventral enclosure. J Cell Sci. 2003 Apr 15;116(Pt 8):1505–1518. doi: 10.1242/jcs.00362. [DOI] [PubMed] [Google Scholar]
- Scholey Jonathan M., Brust-Mascher Ingrid, Mogilner Alex. Cell division. Nature. 2003 Apr 17;422(6933):746–752. doi: 10.1038/nature01599. [DOI] [PubMed] [Google Scholar]
- Severson Aaron F., Baillie David L., Bowerman Bruce. A Formin Homology protein and a profilin are required for cytokinesis and Arp2/3-independent assembly of cortical microfilaments in C. elegans. Curr Biol. 2002 Dec 23;12(24):2066–2075. doi: 10.1016/s0960-9822(02)01355-6. [DOI] [PubMed] [Google Scholar]
- Suetsugu Shiro, Miki Hiroaki, Takenawa Tadaomi. Spatial and temporal regulation of actin polymerization for cytoskeleton formation through Arp2/3 complex and WASP/WAVE proteins. Cell Motil Cytoskeleton. 2002 Mar;51(3):113–122. doi: 10.1002/cm.10020. [DOI] [PubMed] [Google Scholar]
- Sulston J. E., Schierenberg E., White J. G., Thomson J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol. 1983 Nov;100(1):64–119. doi: 10.1016/0012-1606(83)90201-4. [DOI] [PubMed] [Google Scholar]
- Symons M., Derry J. M., Karlak B., Jiang S., Lemahieu V., Mccormick F., Francke U., Abo A. Wiskott-Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization. Cell. 1996 Mar 8;84(5):723–734. doi: 10.1016/s0092-8674(00)81050-8. [DOI] [PubMed] [Google Scholar]
- Vasioukhin V., Bauer C., Yin M., Fuchs E. Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell. 2000 Jan 21;100(2):209–219. doi: 10.1016/s0092-8674(00)81559-7. [DOI] [PubMed] [Google Scholar]
- Wightman B., Clark S. G., Taskar A. M., Forrester W. C., Maricq A. V., Bargmann C. I., Garriga G. The C. elegans gene vab-8 guides posteriorly directed axon outgrowth and cell migration. Development. 1996 Feb;122(2):671–682. doi: 10.1242/dev.122.2.671. [DOI] [PubMed] [Google Scholar]
- Williams-Masson E. M., Heid P. J., Lavin C. A., Hardin J. The cellular mechanism of epithelial rearrangement during morphogenesis of the Caenorhabditis elegans dorsal hypodermis. Dev Biol. 1998 Dec 1;204(1):263–276. doi: 10.1006/dbio.1998.9048. [DOI] [PubMed] [Google Scholar]
- Yamazaki Daisuke, Suetsugu Shiro, Miki Hiroaki, Kataoka Yuki, Nishikawa Shin-Ichi, Fujiwara Takashi, Yoshida Nobuaki, Takenawa Tadaomi. WAVE2 is required for directed cell migration and cardiovascular development. Nature. 2003 Jul 24;424(6947):452–456. doi: 10.1038/nature01770. [DOI] [PubMed] [Google Scholar]
- Yu Timothy W., Hao Joe C., Lim Wendell, Tessier-Lavigne Marc, Bargmann Cornelia I. Shared receptors in axon guidance: SAX-3/Robo signals via UNC-34/Enabled and a Netrin-independent UNC-40/DCC function. Nat Neurosci. 2002 Nov;5(11):1147–1154. doi: 10.1038/nn956. [DOI] [PubMed] [Google Scholar]