Skip to main content
Genetics logoLink to Genetics
. 2004 Aug;167(4):1801–1811. doi: 10.1534/genetics.104.027557

A piggyBac transposon gene trap for the analysis of gene expression and function in Drosophila.

Christopher P Bonin 1, Richard S Mann 1
PMCID: PMC1470976  PMID: 15342518

Abstract

P-element-based gene and enhancer trap strategies have provided a wealth of information on the expression and function of genes in Drosophila melanogaster. Here we present a new vector that utilizes the simple insertion requirements of the piggyBac transposon, coupled to a splice acceptor (SA) site fused to the sequence encoding enhanced green fluorescent protein (EGFP) and a transcriptional terminator. Mobilization of the piggyBac splice site gene trap vector (PBss) was accomplished by heat-shock-induced expression of piggyBac transposase (PBase). We show that insertion of PBss into genes leads to fusions between the gene's mRNA and the PBss-encoded EGFP transcripts. As heterozygotes, these fusions report the normal pattern of expression of the trapped gene. As homozygotes, these fusions can inactivate the gene and lead to lethality. Molecular characterization of PBss insertion events shows that they are single copy, that they always occur at TTAA sequences, and that splicing utilizes the engineered splice site in PBss. In those instances where protein-EGFP fusions are predicted to occur, the subcellular localization of the wild-type protein can be inferred from the localization of the EGFP fusion protein. These experiments highlight the utility of the PBss system for expanding the functional genomics tools that are available in Drosophila.

Full Text

The Full Text of this article is available as a PDF (613.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Bellen H. J., O'Kane C. J., Wilson C., Grossniklaus U., Pearson R. K., Gehring W. J. P-element-mediated enhancer detection: a versatile method to study development in Drosophila. Genes Dev. 1989 Sep;3(9):1288–1300. doi: 10.1101/gad.3.9.1288. [DOI] [PubMed] [Google Scholar]
  3. Bier E., Vaessin H., Shepherd S., Lee K., McCall K., Barbel S., Ackerman L., Carretto R., Uemura T., Grell E. Searching for pattern and mutation in the Drosophila genome with a P-lacZ vector. Genes Dev. 1989 Sep;3(9):1273–1287. doi: 10.1101/gad.3.9.1273. [DOI] [PubMed] [Google Scholar]
  4. Blackman R. K., Koehler M. M., Grimaila R., Gelbart W. M. Identification of a fully-functional hobo transposable element and its use for germ-line transformation of Drosophila. EMBO J. 1989 Jan;8(1):211–217. doi: 10.1002/j.1460-2075.1989.tb03366.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bond B. J., Davidson N. The Drosophila melanogaster actin 5C gene uses two transcription initiation sites and three polyadenylation sites to express multiple mRNA species. Mol Cell Biol. 1986 Jun;6(6):2080–2088. doi: 10.1128/mcb.6.6.2080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brand A. H., Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 1993 Jun;118(2):401–415. doi: 10.1242/dev.118.2.401. [DOI] [PubMed] [Google Scholar]
  7. Cary L. C., Goebel M., Corsaro B. G., Wang H. G., Rosen E., Fraser M. J. Transposon mutagenesis of baculoviruses: analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology. 1989 Sep;172(1):156–169. doi: 10.1016/0042-6822(89)90117-7. [DOI] [PubMed] [Google Scholar]
  8. Chalfie M., Tu Y., Euskirchen G., Ward W. W., Prasher D. C. Green fluorescent protein as a marker for gene expression. Science. 1994 Feb 11;263(5148):802–805. doi: 10.1126/science.8303295. [DOI] [PubMed] [Google Scholar]
  9. Chung Y. T., Keller E. B. Regulatory elements mediating transcription from the Drosophila melanogaster actin 5C proximal promoter. Mol Cell Biol. 1990 Jan;10(1):206–216. doi: 10.1128/mcb.10.1.206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Elick T. A., Bauser C. A., Principe N. M., Fraser M. J., Jr PCR analysis of insertion site specificity, transcription, and structural uniformity of the Lepidopteran transposable element IFP2 in the TN-368 cell genome. Genetica. 1996 Mar;97(2):127–139. doi: 10.1007/BF00054620. [DOI] [PubMed] [Google Scholar]
  11. Furlong E. E., Profitt D., Scott M. P. Automated sorting of live transgenic embryos. Nat Biotechnol. 2001 Feb;19(2):153–156. doi: 10.1038/84422. [DOI] [PubMed] [Google Scholar]
  12. Gossler A., Joyner A. L., Rossant J., Skarnes W. C. Mouse embryonic stem cells and reporter constructs to detect developmentally regulated genes. Science. 1989 Apr 28;244(4903):463–465. doi: 10.1126/science.2497519. [DOI] [PubMed] [Google Scholar]
  13. Handler A. M., Harrell R. A., 2nd Germline transformation of Drosophila melanogaster with the piggyBac transposon vector. Insect Mol Biol. 1999 Nov;8(4):449–457. doi: 10.1046/j.1365-2583.1999.00139.x. [DOI] [PubMed] [Google Scholar]
  14. Jackson Stephen M., Berg Celeste A. An A-kinase anchoring protein is required for protein kinase A regulatory subunit localization and morphology of actin structures during oogenesis in Drosophila. Development. 2002 Oct;129(19):4423–4433. doi: 10.1242/dev.129.19.4423. [DOI] [PubMed] [Google Scholar]
  15. Leighton P. A., Mitchell K. J., Goodrich L. V., Lu X., Pinson K., Scherz P., Skarnes W. C., Tessier-Lavigne M. Defining brain wiring patterns and mechanisms through gene trapping in mice. Nature. 2001 Mar 8;410(6825):174–179. doi: 10.1038/35065539. [DOI] [PubMed] [Google Scholar]
  16. Li X., Heinrich J. C., Scott M. J. piggyBac-mediated transposition in Drosophila melanogaster: an evaluation of the use of constitutive promoters to control transposase gene expression. Insect Mol Biol. 2001 Oct;10(5):447–455. [PubMed] [Google Scholar]
  17. Li Z., Rossi E. A., Hoheisel J. D., Kalderon D., Rubin C. S. Generation of a novel A kinase anchor protein and a myristoylated alanine-rich C kinase substrate-like analog from a single gene. J Biol Chem. 1999 Sep 17;274(38):27191–27200. doi: 10.1074/jbc.274.38.27191. [DOI] [PubMed] [Google Scholar]
  18. Lobo N., Li X., Fraser M. J., Jr Transposition of the piggyBac element in embryos of Drosophila melanogaster, Aedes aegypti and Trichoplusia ni. Mol Gen Genet. 1999 Jun;261(4-5):803–810. doi: 10.1007/s004380050024. [DOI] [PubMed] [Google Scholar]
  19. Long M., Deutsch M. Association of intron phases with conservation at splice site sequences and evolution of spliceosomal introns. Mol Biol Evol. 1999 Nov;16(11):1528–1534. doi: 10.1093/oxfordjournals.molbev.a026065. [DOI] [PubMed] [Google Scholar]
  20. Long Manyuan, Deutsch Michael, Wang Wen, Betrán Esther, Brunet Frédéric G., Zhang Jianming. Origin of new genes: evidence from experimental and computational analyses. Genetica. 2003 Jul;118(2-3):171–182. [PubMed] [Google Scholar]
  21. Lukacsovich T., Asztalos Z., Awano W., Baba K., Kondo S., Niwa S., Yamamoto D. Dual-tagging gene trap of novel genes in Drosophila melanogaster. Genetics. 2001 Feb;157(2):727–742. doi: 10.1093/genetics/157.2.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Morin X., Daneman R., Zavortink M., Chia W. A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc Natl Acad Sci U S A. 2001 Dec 11;98(26):15050–15055. doi: 10.1073/pnas.261408198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mount S. M., Burks C., Hertz G., Stormo G. D., White O., Fields C. Splicing signals in Drosophila: intron size, information content, and consensus sequences. Nucleic Acids Res. 1992 Aug 25;20(16):4255–4262. doi: 10.1093/nar/20.16.4255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Niwa H., Araki K., Kimura S., Taniguchi S., Wakasugi S., Yamamura K. An efficient gene-trap method using poly A trap vectors and characterization of gene-trap events. J Biochem. 1993 Mar;113(3):343–349. doi: 10.1093/oxfordjournals.jbchem.a124049. [DOI] [PubMed] [Google Scholar]
  25. O'Brochta D. A., Atkinson P. W. Transposable elements and gene transformation in non-drosophilid insects. Insect Biochem Mol Biol. 1996 Sep-Oct;26(8-9):739–753. doi: 10.1016/s0965-1748(96)00022-7. [DOI] [PubMed] [Google Scholar]
  26. O'Kane C. J., Gehring W. J. Detection in situ of genomic regulatory elements in Drosophila. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9123–9127. doi: 10.1073/pnas.84.24.9123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rossi E. A., Li Z., Feng H., Rubin C. S. Characterization of the targeting, binding, and phosphorylation site domains of an A kinase anchor protein and a myristoylated alanine-rich C kinase substrate-like analog that are encoded by a single gene. J Biol Chem. 1999 Sep 17;274(38):27201–27210. doi: 10.1074/jbc.274.38.27201. [DOI] [PubMed] [Google Scholar]
  28. Skarnes W. C., Auerbach B. A., Joyner A. L. A gene trap approach in mouse embryonic stem cells: the lacZ reported is activated by splicing, reflects endogenous gene expression, and is mutagenic in mice. Genes Dev. 1992 Jun;6(6):903–918. doi: 10.1101/gad.6.6.903. [DOI] [PubMed] [Google Scholar]
  29. Skarnes W. C., Moss J. E., Hurtley S. M., Beddington R. S. Capturing genes encoding membrane and secreted proteins important for mouse development. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6592–6596. doi: 10.1073/pnas.92.14.6592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wilson C., Pearson R. K., Bellen H. J., O'Kane C. J., Grossniklaus U., Gehring W. J. P-element-mediated enhancer detection: an efficient method for isolating and characterizing developmentally regulated genes in Drosophila. Genes Dev. 1989 Sep;3(9):1301–1313. doi: 10.1101/gad.3.9.1301. [DOI] [PubMed] [Google Scholar]
  31. Zambrowicz B. P., Friedrich G. A., Buxton E. C., Lilleberg S. L., Person C., Sands A. T. Disruption and sequence identification of 2,000 genes in mouse embryonic stem cells. Nature. 1998 Apr 9;392(6676):608–611. doi: 10.1038/33423. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES