Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Nov 15;25(22):4581–4588. doi: 10.1093/nar/25.22.4581

2'-Fluoro modified nucleic acids: polymerase-directed synthesis, properties and stability to analysis by matrix-assisted laser desorption/ionization mass spectrometry.

T Ono 1, M Scalf 1, L M Smith 1
PMCID: PMC147098  PMID: 9358169

Abstract

Fragmentation is a major factor limiting mass range and resolution in the analysis of DNA by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Protonation of the nucleobase leads to base loss and backbone cleavage by a mechanism similar to the depurination reactions employed in the chemical degradation method of DNA sequencing. In a previous study [Tang,W., Zhu,L. and Smith,L.M. (1997) Anal. Chem ., 69, 302-312], the stabilizing effect of substituting the 24 hydrogen with an electronegative group such as hydroxyl or fluorine was investigated. These 24 substitutions stabilized the N-glycosidic linkage, blocking base loss and subsequent backbone cleavage. For such chemical modifications to be of practical significance, it would be useful to be able to employ the corresponding 24-modified nucleoside triphosphates in the polymerase-directed synthesis of DNA. This would provide an avenue to the preparation of 24-modified PCR fragments and dideoxy sequencing ladders stabilized for MALDI analysis. In this paper methods are described for the polymerase-directed synthesis of 24-fluoro modified DNA, using commercially available 24-fluoronucleoside triphosphates. The ability of a number of DNA and RNA polymerases to incorporate the 24-fluoro analogs was tested. Four thermostable DNA polymerases [Pfu (exo-), Vent (exo-), Deep Vent (exo-) and UlTma] were found that were able to incorporate 24-fluoronucleotides with reasonable efficiency. In order to perform Sanger sequencing reactions, the enzymes' ability to incorporate dideoxy terminators in conjunction with the 24-fluoronucleotides was evaluated. UlTma DNA polymerase was found to be the best of the enzymes tested for this purpose. MALDI analysis of enzymatically produced 24-fluoro modified DNA using the matrix 2,5-dihydroxy benzoic acid showed no base loss or backbone fragmentation, in contrast to the extensive fragmentation evident with unmodified DNA of the same sequence.

Full Text

The Full Text of this article is available as a PDF (293.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aurup H., Siebert A., Benseler F., Williams D., Eckstein F. Translation of 2'-modified mRNA in vitro and in vivo. Nucleic Acids Res. 1994 Nov 25;22(23):4963–4968. doi: 10.1093/nar/22.23.4963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aurup H., Williams D. M., Eckstein F. 2'-Fluoro- and 2'-amino-2'-deoxynucleoside 5'-triphosphates as substrates for T7 RNA polymerase. Biochemistry. 1992 Oct 13;31(40):9636–9641. doi: 10.1021/bi00155a016. [DOI] [PubMed] [Google Scholar]
  3. Bentzley C. M., Johnston M. V., Larsen B. S., Gutteridge S. Oligonucleotide sequence and composition determined by matrix-assisted laser desorption/ionization. Anal Chem. 1996 Jul 1;68(13):2141–2146. doi: 10.1021/ac951213n. [DOI] [PubMed] [Google Scholar]
  4. Chou C. W., Bingham S. E., Williams P. Affinity methods for purification of DNA sequencing reaction products for mass spectrometric analysis. Rapid Commun Mass Spectrom. 1996;10(11):1410–1414. doi: 10.1002/(SICI)1097-0231(199608)10:11<1410::AID-RCM671>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  5. Doktycz M. J., Hurst G. B., Habibi-Goudarzi S., McLuckey S. A., Tang K., Chen C. H., Uziel M., Jacobson K. B., Woychik R. P., Buchanan M. V. Analysis of polymerase chain reaction-amplified DNA products by mass spectrometry using matrix-assisted laser desorption and electrospray: current status. Anal Biochem. 1995 Sep 20;230(2):205–214. doi: 10.1006/abio.1995.1465. [DOI] [PubMed] [Google Scholar]
  6. Eckert K. A., Kunkel T. A. High fidelity DNA synthesis by the Thermus aquaticus DNA polymerase. Nucleic Acids Res. 1990 Jul 11;18(13):3739–3744. doi: 10.1093/nar/18.13.3739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fenn J. B., Mann M., Meng C. K., Wong S. F., Whitehouse C. M. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989 Oct 6;246(4926):64–71. doi: 10.1126/science.2675315. [DOI] [PubMed] [Google Scholar]
  8. Fu D. J., Broude N. E., Köster H., Smith C. L., Cantor C. R. Efficient preparation of short DNA sequence ladders potentially suitable for MALDI-TOF DNA sequencing. Genet Anal. 1996 Jan;12(3-4):137–142. [PubMed] [Google Scholar]
  9. Guschlbauer W., Blandin M., Drocourt J. L., Thang M. N. Poly-2'-deoxy-2'-fluoro-cytidylic acid: enzymatic synthesis, spectroscopic characterization and interaction with poly-inosinic acid. Nucleic Acids Res. 1977 Jun;4(6):1933–1943. doi: 10.1093/nar/4.6.1933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Guschlbauer W., Jankowski K. Nucleoside conformation is determined by the electronegativity of the sugar substituent. Nucleic Acids Res. 1980 Mar 25;8(6):1421–1433. doi: 10.1093/nar/8.6.1421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hahner S., Lüdemann H. C., Kirpekar F., Nordhoff E., Roepstorff P., Galla H. J., Hillenkamp F. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) of endonuclease digests of RNA. Nucleic Acids Res. 1997 May 15;25(10):1957–1964. doi: 10.1093/nar/25.10.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hurst G. B., Doktycz M. J., Vass A. A., Buchanan M. V. Detection of bacterial DNA polymerase chain reaction products by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom. 1996;10(3):377–382. doi: 10.1002/(SICI)1097-0231(199602)10:3<377::AID-RCM481>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
  13. Ikehara M., Fukui T., Kakiuchi N. Polynucleotides. LII. Synthesis and properties of poly(2'-deoxy-2'-fluoroadenylic acid). Nucleic Acids Res. 1978 Jun;5(6):1877–1887. doi: 10.1093/nar/5.6.1877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Janik B., Kotick M. P., Kreiser T. H., Reverman L. F., Sommer R. G., Wilson D. P. Synthesis and properties of poly 2'-fluoro-2'-deoxyuridylic acid. Biochem Biophys Res Commun. 1972 Feb 16;46(3):1153–1160. doi: 10.1016/s0006-291x(72)80095-0. [DOI] [PubMed] [Google Scholar]
  15. Kakiuchi N., Marck C., Rousseau N., Leng M., De Clerq E., Guschlbauer W. Polynucleotide helix geometry and stability. Spectroscopic, antigenic and interferon-inducing properties of deoxyribose-, ribose-, or 2'-deoxy-2'-fluororibose-containing duplexes of poly(inosinic acid) . poly(cytidylic acid). J Biol Chem. 1982 Feb 25;257(4):1924–1928. [PubMed] [Google Scholar]
  16. Karas M., Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem. 1988 Oct 15;60(20):2299–2301. doi: 10.1021/ac00171a028. [DOI] [PubMed] [Google Scholar]
  17. Kaufmann R., Spengler B., Lützenkirchen F. Mass spectrometric sequencing of linear peptides by product-ion analysis in a reflectron time-of-flight mass spectrometer using matrix-assisted laser desorption ionization. Rapid Commun Mass Spectrom. 1993 Oct;7(10):902–910. doi: 10.1002/rcm.1290071010. [DOI] [PubMed] [Google Scholar]
  18. Kawasaki A. M., Casper M. D., Freier S. M., Lesnik E. A., Zounes M. C., Cummins L. L., Gonzalez C., Cook P. D. Uniformly modified 2'-deoxy-2'-fluoro phosphorothioate oligonucleotides as nuclease-resistant antisense compounds with high affinity and specificity for RNA targets. J Med Chem. 1993 Apr 2;36(7):831–841. doi: 10.1021/jm00059a007. [DOI] [PubMed] [Google Scholar]
  19. Kirpekar F., Nordhoff E., Kristiansen K., Roepstorff P., Lezius A., Hahner S., Karas M., Hillenkamp F. Matrix assisted laser desorption/ionization mass spectrometry of enzymatically synthesized RNA up to 150 kDa. Nucleic Acids Res. 1994 Sep 25;22(19):3866–3870. doi: 10.1093/nar/22.19.3866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Köster H., Tang K., Fu D. J., Braun A., van den Boom D., Smith C. L., Cotter R. J., Cantor C. R. A strategy for rapid and efficient DNA sequencing by mass spectrometry. Nat Biotechnol. 1996 Sep;14(9):1123–1128. doi: 10.1038/nbt0996-1123. [DOI] [PubMed] [Google Scholar]
  21. Lundberg K. S., Shoemaker D. D., Adams M. W., Short J. M., Sorge J. A., Mathur E. J. High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus. Gene. 1991 Dec 1;108(1):1–6. doi: 10.1016/0378-1119(91)90480-y. [DOI] [PubMed] [Google Scholar]
  22. Mattila P., Korpela J., Tenkanen T., Pitkänen K. Fidelity of DNA synthesis by the Thermococcus litoralis DNA polymerase--an extremely heat stable enzyme with proofreading activity. Nucleic Acids Res. 1991 Sep 25;19(18):4967–4973. doi: 10.1093/nar/19.18.4967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., Green M. R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984 Sep 25;12(18):7035–7056. doi: 10.1093/nar/12.18.7035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Monforte J. A., Becker C. H. High-throughput DNA analysis by time-of-flight mass spectrometry. Nat Med. 1997 Mar;3(3):360–362. doi: 10.1038/nm0397-360. [DOI] [PubMed] [Google Scholar]
  25. Mouradian S., Rank D. R., Smith L. M. Analyzing sequencing reactions from bacteriophage M13 by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom. 1996;10(12):1475–1478. doi: 10.1002/(SICI)1097-0231(199609)10:12<1475::AID-RCM696>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
  26. Nordhoff E., Cramer R., Karas M., Hillenkamp F., Kirpekar F., Kristiansen K., Roepstorff P. Ion stability of nucleic acids in infrared matrix-assisted laser desorption/ionization mass spectrometry. Nucleic Acids Res. 1993 Jul 25;21(15):3347–3357. doi: 10.1093/nar/21.15.3347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pan W., Craven R. C., Qiu Q., Wilson C. B., Wills J. W., Golovine S., Wang J. F. Isolation of virus-neutralizing RNAs from a large pool of random sequences. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11509–11513. doi: 10.1073/pnas.92.25.11509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pieles U., Zürcher W., Schär M., Moser H. E. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a powerful tool for the mass and sequence analysis of natural and modified oligonucleotides. Nucleic Acids Res. 1993 Jul 11;21(14):3191–3196. doi: 10.1093/nar/21.14.3191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Roskey M. T., Juhasz P., Smirnov I. P., Takach E. J., Martin S. A., Haff L. A. DNA sequencing by delayed extraction-matrix-assisted laser desorption/ionization time of flight mass spectrometry. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4724–4729. doi: 10.1073/pnas.93.10.4724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shaler T. A., Tan Y., Wickham J. N., Wu K. J., Becker C. H. Analysis of enzymatic DNA sequencing reactions by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1995;9(10):942–947. doi: 10.1002/rcm.1290091015. [DOI] [PubMed] [Google Scholar]
  31. Smirnov I. P., Roskey M. T., Juhasz P., Takach E. J., Martin S. A., Haff L. A. Sequencing oligonucleotides by exonuclease digestion and delayed extraction matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Anal Biochem. 1996 Jun 15;238(1):19–25. doi: 10.1006/abio.1996.0243. [DOI] [PubMed] [Google Scholar]
  32. Smith L. M. The future of DNA sequencing. Science. 1993 Oct 22;262(5133):530–532. doi: 10.1126/science.8211178. [DOI] [PubMed] [Google Scholar]
  33. Tabor S., Richardson C. C. A single residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy- and dideoxyribonucleotides. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6339–6343. doi: 10.1073/pnas.92.14.6339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tabor S., Richardson C. C. DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Effect of pyrophosphorolysis and metal ions. J Biol Chem. 1990 May 15;265(14):8322–8328. [PubMed] [Google Scholar]
  35. Tang K., Allman S. L., Jones R. B., Chen C. H., Araghi S. Laser mass spectrometry of oligonucleotides with isomer matrices. Rapid Commun Mass Spectrom. 1993 Jun;7(6):435–439. doi: 10.1002/rcm.1290070606. [DOI] [PubMed] [Google Scholar]
  36. Tang K., Fu D., Kötter S., Cotter R. J., Cantor C. R., Köster H. Matrix-assisted laser desorption/ionization mass spectrometry of immobilized duplex DNA probes. Nucleic Acids Res. 1995 Aug 25;23(16):3126–3131. doi: 10.1093/nar/23.16.3126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Taranenko N. I., Chung C. N., Zhu Y. F., Allman S. L., Golovlev V. V., Isola N. R., Martin S. A., Haff L. A., Chen C. H. Matrix-assisted laser desorption/ionization for sequencing single-stranded and double-stranded DNA. Rapid Commun Mass Spectrom. 1997;11(4):386–392. doi: 10.1002/(SICI)1097-0231(19970228)11:4<386::AID-RCM867>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES