Abstract
Evolution of the HIV-1 V3 loop was monitored in 15 subjects over a period of 5 years at approximately 6-month intervals. Putative recombination was detected in many of the sequences. Evolutionary trees were estimated from the nonrecombinant viral sequences found in each individual. Selection and altered demographic regimes were detected with logit and other contingency analyses in a highly context-dependent fashion. Mutations leading to amino acid substitutions are subject to positive selection over a broad range of clinical conditions in the nonsyncytium-inducing (NSI) form, and the growth rates of the NSI strains and their level of genetic subdivision change little in going from a healthy immune system to a severely compromised immune system. In contrast, the SI form has a significant increase in growth rate as the immune system goes from healthy to compromised, particularly in those subjects who did not receive any antiviral drug therapy. This increase in SI growth rate results in a significant growth advantage of SI over NSI when the immune system is compromised. The SI strains also show more demographic subdivision when the immune system is healthy than when the immune system is compromised, and the SI form has greater demographic subdivision than NSI in subjects with healthy immune systems who also are not receiving antiviral drug therapy. Positive selection on amino-acid-changing mutations weakens and then intensifies again in the SI strains in going from healthy to compromised immune systems. These patterns are consistent with other studies that suggest that NSI strains inhibit replication of SI strains, that the V3 loop is more hidden from the immune system in the NSI form, that evolution in the V3 loop influences cell tropism and coreceptor usage, that substrate for replication of SI forms increases as the disease progresses, and that death of CD8 cells is influenced by the type of coreceptor usage typically found in SI but not in NSI strains. Finally, the transition between NSI and SI forms is associated with a burst of evolutionary change due to strong positive selection at sites other than those that define the NSI/SI phenotypes.
Full Text
The Full Text of this article is available as a PDF (150.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blanco J., Barretina J., Cabrera C., Gutiérrez A., Clotet B., Esté J. A. CD4(+) and CD8(+) T cell death during human immunodeficiency virus infection in vitro. Virology. 2001 Jul 5;285(2):356–365. doi: 10.1006/viro.2001.0969. [DOI] [PubMed] [Google Scholar]
- Briggs D. R., Tuttle D. L., Sleasman J. W., Goodenow M. M. Envelope V3 amino acid sequence predicts HIV-1 phenotype (co-receptor usage and tropism for macrophages). AIDS. 2000 Dec 22;14(18):2937–2939. doi: 10.1097/00002030-200012220-00016. [DOI] [PubMed] [Google Scholar]
- Callaway D. S., Ribeiro R. M., Nowak M. A. Virus phenotype switching and disease progression in HIV-1 infection. Proc Biol Sci. 1999 Dec 22;266(1437):2523–2530. doi: 10.1098/rspb.1999.0955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carrieri M. P., Chesney M. A., Spire B., Loundou A., Sobel A., Lepeu G., Moatti J. P., MANIF Study Group Failure to maintain adherence to HAART in a cohort of French HIV-positive injecting drug users. Int J Behav Med. 2003;10(1):1–14. doi: 10.1207/s15327558ijbm1001_01. [DOI] [PubMed] [Google Scholar]
- Castelloe J., Templeton A. R. Root probabilities for intraspecific gene trees under neutral coalescent theory. Mol Phylogenet Evol. 1994 Jun;3(2):102–113. doi: 10.1006/mpev.1994.1013. [DOI] [PubMed] [Google Scholar]
- Coffin J. M. HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science. 1995 Jan 27;267(5197):483–489. doi: 10.1126/science.7824947. [DOI] [PubMed] [Google Scholar]
- Dittmar M. T., McKnight A., Simmons G., Clapham P. R., Weiss R. A., Simmonds P. HIV-1 tropism and co-receptor use. Nature. 1997 Feb 6;385(6616):495–496. doi: 10.1038/385495a0. [DOI] [PubMed] [Google Scholar]
- Endo T., Ikeo K., Gojobori T. Large-scale search for genes on which positive selection may operate. Mol Biol Evol. 1996 May;13(5):685–690. doi: 10.1093/oxfordjournals.molbev.a025629. [DOI] [PubMed] [Google Scholar]
- Fu Y. X., Li W. H. Statistical tests of neutrality of mutations. Genetics. 1993 Mar;133(3):693–709. doi: 10.1093/genetics/133.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ganeshan S., Dickover R. E., Korber B. T., Bryson Y. J., Wolinsky S. M. Human immunodeficiency virus type 1 genetic evolution in children with different rates of development of disease. J Virol. 1997 Jan;71(1):663–677. doi: 10.1128/jvi.71.1.663-677.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herbein G., Mahlknecht U., Batliwalla F., Gregersen P., Pappas T., Butler J., O'Brien W. A., Verdin E. Apoptosis of CD8+ T cells is mediated by macrophages through interaction of HIV gp120 with chemokine receptor CXCR4. Nature. 1998 Sep 10;395(6698):189–194. doi: 10.1038/26026. [DOI] [PubMed] [Google Scholar]
- Kestens L., Vanham G., Vereecken C., Vandenbruaene M., Vercauteren G., Colebunders R. L., Gigase P. L. Selective increase of activation antigens HLA-DR and CD38 on CD4+ CD45RO+ T lymphocytes during HIV-1 infection. Clin Exp Immunol. 1994 Mar;95(3):436–441. doi: 10.1111/j.1365-2249.1994.tb07015.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu S. L., Schacker T., Musey L., Shriner D., McElrath M. J., Corey L., Mullins J. I. Divergent patterns of progression to AIDS after infection from the same source: human immunodeficiency virus type 1 evolution and antiviral responses. J Virol. 1997 Jun;71(6):4284–4295. doi: 10.1128/jvi.71.6.4284-4295.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Markham R. B., Wang W. C., Weisstein A. E., Wang Z., Munoz A., Templeton A., Margolick J., Vlahov D., Quinn T., Farzadegan H. Patterns of HIV-1 evolution in individuals with differing rates of CD4 T cell decline. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12568–12573. doi: 10.1073/pnas.95.21.12568. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McDonald J. H., Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652–654. doi: 10.1038/351652a0. [DOI] [PubMed] [Google Scholar]
- McDonald R. A., Mayers D. L., Chung R. C., Wagner K. F., Ratto-Kim S., Birx D. L., Michael N. L. Evolution of human immunodeficiency virus type 1 env sequence variation in patients with diverse rates of disease progression and T-cell function. J Virol. 1997 Mar;71(3):1871–1879. doi: 10.1128/jvi.71.3.1871-1879.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nielsen R. Statistical tests of selective neutrality in the age of genomics. Heredity (Edinb) 2001 Jun;86(Pt 6):641–647. doi: 10.1046/j.1365-2540.2001.00895.x. [DOI] [PubMed] [Google Scholar]
- Nowak M. A., May R. M., Phillips R. E., Rowland-Jones S., Lalloo D. G., McAdam S., Klenerman P., Köppe B., Sigmund K., Bangham C. R. Antigenic oscillations and shifting immunodominance in HIV-1 infections. Nature. 1995 Jun 15;375(6532):606–611. doi: 10.1038/375606a0. [DOI] [PubMed] [Google Scholar]
- Palepu Anita, Tyndall Mark, Yip Benita, O'Shaughnessy Michael V., Hogg Robert S., Montaner Julio S. G. Impaired virologic response to highly active antiretroviral therapy associated with ongoing injection drug use. J Acquir Immune Defic Syndr. 2003 Apr 15;32(5):522–526. doi: 10.1097/00126334-200304150-00009. [DOI] [PubMed] [Google Scholar]
- Perelson A. S., Neumann A. U., Markowitz M., Leonard J. M., Ho D. D. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science. 1996 Mar 15;271(5255):1582–1586. doi: 10.1126/science.271.5255.1582. [DOI] [PubMed] [Google Scholar]
- Rowland-Jones S., Pinheiro S., Kaul R. New insights into host factors in HIV-1 pathogenesis. Cell. 2001 Feb 23;104(4):473–476. doi: 10.1016/s0092-8674(01)00235-5. [DOI] [PubMed] [Google Scholar]
- Seibert S. A., Howell C. Y., Hughes M. K., Hughes A. L. Natural selection on the gag, pol, and env genes of human immunodeficiency virus 1 (HIV-1). Mol Biol Evol. 1995 Sep;12(5):803–813. doi: 10.1093/oxfordjournals.molbev.a040257. [DOI] [PubMed] [Google Scholar]
- Shankarappa R., Gupta P., Learn G. H., Jr, Rodrigo A. G., Rinaldo C. R., Jr, Gorry M. C., Mullins J. I., Nara P. L., Ehrlich G. D. Evolution of human immunodeficiency virus type 1 envelope sequences in infected individuals with differing disease progression profiles. Virology. 1998 Feb 15;241(2):251–259. doi: 10.1006/viro.1997.8996. [DOI] [PubMed] [Google Scholar]
- Shankarappa R., Margolick J. B., Gange S. J., Rodrigo A. G., Upchurch D., Farzadegan H., Gupta P., Rinaldo C. R., Learn G. H., He X. Consistent viral evolutionary changes associated with the progression of human immunodeficiency virus type 1 infection. J Virol. 1999 Dec;73(12):10489–10502. doi: 10.1128/jvi.73.12.10489-10502.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shiino T., Kato K., Kodaka N., Miyakuni T., Takebe Y., Sato H. A group of V3 sequences from human immunodeficiency virus type 1 subtype E non-syncytium-inducing, CCR5-using variants are resistant to positive selection pressure. J Virol. 2000 Feb;74(3):1069–1078. doi: 10.1128/jvi.74.3.1069-1078.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Templeton A. R. Contingency tests of neutrality using intra/interspecific gene trees: the rejection of neutrality for the evolution of the mitochondrial cytochrome oxidase II gene in the hominoid primates. Genetics. 1996 Nov;144(3):1263–1270. doi: 10.1093/genetics/144.3.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Templeton A. R., Crandall K. A., Sing C. F. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics. 1992 Oct;132(2):619–633. doi: 10.1093/genetics/132.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wei X., Ghosh S. K., Taylor M. E., Johnson V. A., Emini E. A., Deutsch P., Lifson J. D., Bonhoeffer S., Nowak M. A., Hahn B. H. Viral dynamics in human immunodeficiency virus type 1 infection. Nature. 1995 Jan 12;373(6510):117–122. doi: 10.1038/373117a0. [DOI] [PubMed] [Google Scholar]
- Wolinsky S. M., Korber B. T., Neumann A. U., Daniels M., Kunstman K. J., Whetsell A. J., Furtado M. R., Cao Y., Ho D. D., Safrit J. T. Adaptive evolution of human immunodeficiency virus-type 1 during the natural course of infection. Science. 1996 Apr 26;272(5261):537–542. doi: 10.1126/science.272.5261.537. [DOI] [PubMed] [Google Scholar]
- Wood Evan, Montaner Julio S. G., Yip Benita, Tyndall Mark W., Schechter Martin T., O'Shaughnessy Michael V., Hogg Robert S. Adherence and plasma HIV RNA responses to highly active antiretroviral therapy among HIV-1 infected injection drug users. CMAJ. 2003 Sep 30;169(7):656–661. [PMC free article] [PubMed] [Google Scholar]
- Xiao H., Neuveut C., Tiffany H. L., Benkirane M., Rich E. A., Murphy P. M., Jeang K. T. Selective CXCR4 antagonism by Tat: implications for in vivo expansion of coreceptor use by HIV-1. Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11466–11471. doi: 10.1073/pnas.97.21.11466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamaguchi Y., Gojobori T. Evolutionary mechanisms and population dynamics of the third variable envelope region of HIV within single hosts. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1264–1269. doi: 10.1073/pnas.94.4.1264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Rij R. P., Blaak H., Visser J. A., Brouwer M., Rientsma R., Broersen S., de Roda Husman A. M., Schuitemaker H. Differential coreceptor expression allows for independent evolution of non-syncytium-inducing and syncytium-inducing HIV-1. J Clin Invest. 2000 Oct;106(8):1039–1052. doi: 10.1172/JCI7953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Rij Ronald P., Hazenberg Mette D., van Benthem Birgit H. B., Otto Sigrid A., Prins Maria, Miedema Frank, Schuitemaker Hanneke. Early viral load and CD4+ T cell count, but not percentage of CCR5+ or CXCR4+ CD4+ T cells, are associated with R5-to-X4 HIV type 1 virus evolution. AIDS Res Hum Retroviruses. 2003 May;19(5):389–398. doi: 10.1089/088922203765551737. [DOI] [PubMed] [Google Scholar]