Skip to main content
Genetics logoLink to Genetics
. 2004 Aug;167(4):1563–1572. doi: 10.1534/genetics.103.024380

The role of cis-acting sequences governing catabolite repression control of lacS expression in the archaeon Sulfolobus solfataricus.

Viet Hoang 1, Elisabetta Bini 1, Vidula Dixit 1, Melissa Drozda 1, Paul Blum 1
PMCID: PMC1470987  PMID: 15342498

Abstract

The archaeon Sulfolobus solfataricus uses a catabolite repression-like system to control production of several glycoside hydrolases. To better understand this regulatory system, studies of the regulation of expression of the beta-glycosidase gene (lacS) were conducted. Expression of lacS varies in response to medium composition and to mutations at an unlinked gene called car. Despite gene overlap, expression of the lacS promoter proximal gene, SSO3017, exhibited coregulation but not cotranscription with lacS. Measurements of mRNA half-life excluded differential stability as a factor in lacS regulation. Chromosomal repositioning by homologous recombination of a lacS deletion series clarified critical cis-acting sequences required for lacS regulation. lacS repositioned at amyA exhibited increased lacS expression and compromised the response to medium composition independently of lacS 5' flanking sequence composition. In contrast, regulation of lacS by the car mutation was dependent on sequences upstream of the archaeal TATA box. Expression of a promoter fusion between lacS and the car-independent malA promoter integrated either at amyA or at the natural lacS locus was insensitive to the allelic state of car. In contrast, the promoter fusion retained a response to medium composition only at the lacS locus. These results indicate that car acts at the lacS promoter and that the response to medium composition involves locus-specific sequences exclusive of those present 5' to lacS or within the lacS transcription unit.

Full Text

The Full Text of this article is available as a PDF (242.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell S. D., Cairns S. S., Robson R. L., Jackson S. P. Transcriptional regulation of an archaeal operon in vivo and in vitro. Mol Cell. 1999 Dec;4(6):971–982. doi: 10.1016/s1097-2765(00)80226-9. [DOI] [PubMed] [Google Scholar]
  2. Bell S. D., Jackson S. P. Transcription and translation in Archaea: a mosaic of eukaryal and bacterial features. Trends Microbiol. 1998 Jun;6(6):222–228. doi: 10.1016/s0966-842x(98)01281-5. [DOI] [PubMed] [Google Scholar]
  3. Bini E., Blum P. Archaeal catabolite repression: a gene regulatory paradigm. Adv Appl Microbiol. 2001;50:339–366. doi: 10.1016/s0065-2164(01)50009-x. [DOI] [PubMed] [Google Scholar]
  4. Bini Elisabetta, Dikshit Vidula, Dirksen Kristi, Drozda Melissa, Blum Paul. Stability of mRNA in the hyperthermophilic archaeon Sulfolobus solfataricus. RNA. 2002 Sep;8(9):1129–1136. doi: 10.1017/s1355838202021052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brock T. D., Brock K. M., Belly R. T., Weiss R. L. Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol. 1972;84(1):54–68. doi: 10.1007/BF00408082. [DOI] [PubMed] [Google Scholar]
  6. Cohen-Kupiec R., Blank C., Leigh J. A. Transcriptional regulation in Archaea: in vivo demonstration of a repressor binding site in a methanogen. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1316–1320. doi: 10.1073/pnas.94.4.1316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dahlke Isabell, Thomm Michael. A Pyrococcus homolog of the leucine-responsive regulatory protein, LrpA, inhibits transcription by abrogating RNA polymerase recruitment. Nucleic Acids Res. 2002 Feb 1;30(3):701–710. doi: 10.1093/nar/30.3.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Engelsberg M, de Souza RE, Valadares Pereira PH Dipolar NMR line shape in a crystal with nonequivalent sites. Phys Rev B Condens Matter. 1989 Jul 1;40(1):106–110. doi: 10.1103/physrevb.40.106. [DOI] [PubMed] [Google Scholar]
  9. Haseltine C., Montalvo-Rodriguez R., Bini E., Carl A., Blum P. Coordinate transcriptional control in the hyperthermophilic archaeon Sulfolobus solfataricus. J Bacteriol. 1999 Jul;181(13):3920–3927. doi: 10.1128/jb.181.13.3920-3927.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Haseltine C., Montalvo-Rodriguez R., Carl A., Bini E., Blum P. Extragenic pleiotropic mutations that repress glycosyl hydrolase expression in the hyperthermophilic archaeon Sulfolobus solfataricus. Genetics. 1999 Aug;152(4):1353–1361. doi: 10.1093/genetics/152.4.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Haseltine C., Rolfsmeier M., Blum P. The glucose effect and regulation of alpha-amylase synthesis in the hyperthermophilic archaeon Sulfolobus solfataricus. J Bacteriol. 1996 Feb;178(4):945–950. doi: 10.1128/jb.178.4.945-950.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Higuchi R., Krummel B., Saiki R. K. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 1988 Aug 11;16(15):7351–7367. doi: 10.1093/nar/16.15.7351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nilsson G., Belasco J. G., Cohen S. N., von Gabain A. Growth-rate dependent regulation of mRNA stability in Escherichia coli. Nature. 1984 Nov 1;312(5989):75–77. doi: 10.1038/312075a0. [DOI] [PubMed] [Google Scholar]
  14. Ouhammouch Mohamed, Dewhurst Robert E., Hausner Winfried, Thomm Michael, Geiduschek E. Peter. Activation of archaeal transcription by recruitment of the TATA-binding protein. Proc Natl Acad Sci U S A. 2003 Apr 11;100(9):5097–5102. doi: 10.1073/pnas.0837150100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Plösser Petra, Pfeifer Felicitas. A bZIP protein from halophilic archaea: structural features and dimer formation of cGvpE from Halobacterium salinarum. Mol Microbiol. 2002 Jul;45(2):511–520. doi: 10.1046/j.1365-2958.2002.03031.x. [DOI] [PubMed] [Google Scholar]
  16. Prisco A., Moracci M., Rossi M., Ciaramella M. A gene encoding a putative membrane protein homologous to the major facilitator superfamily of transporters maps upstream of the beta-glycosidase gene in the archaeon Sulfolobus solfataricus. J Bacteriol. 1995 Mar;177(6):1614–1619. doi: 10.1128/jb.177.6.1614-1619.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rockabrand D., Livers K., Austin T., Kaiser R., Jensen D., Burgess R., Blum P. Roles of DnaK and RpoS in starvation-induced thermotolerance of Escherichia coli. J Bacteriol. 1998 Feb;180(4):846–854. doi: 10.1128/jb.180.4.846-854.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rolfsmeier M., Blum P. Purification and characterization of a maltase from the extremely thermophilic crenarchaeote Sulfolobus solfataricus. J Bacteriol. 1995 Jan;177(2):482–485. doi: 10.1128/jb.177.2.482-485.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rolfsmeier M., Haseltine C., Bini E., Clark A., Blum P. Molecular characterization of the alpha-glucosidase gene (malA) from the hyperthermophilic archaeon Sulfolobus solfataricus. J Bacteriol. 1998 Mar;180(5):1287–1295. doi: 10.1128/jb.180.5.1287-1295.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Soppa J. Basal and regulated transcription in archaea. Adv Appl Microbiol. 2001;50:171–217. doi: 10.1016/s0065-2164(01)50006-4. [DOI] [PubMed] [Google Scholar]
  21. Worthington Penny, Hoang Viet, Perez-Pomares Francisco, Blum Paul. Targeted disruption of the alpha-amylase gene in the hyperthermophilic archaeon Sulfolobus solfataricus. J Bacteriol. 2003 Jan;185(2):482–488. doi: 10.1128/JB.185.2.482-488.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES