Abstract
The impact of ploidy on adaptation is a central issue in evolutionary biology. While many eukaryotic organisms exist as diploids, with two sets of gametic genomes residing in the same nucleus, most basidiomycete fungi exist as dikaryons in which the two genomes exist in separate nuclei that are physically paired and that divide in a coordinated manner during hyphal extension. To determine if haploid monokaryotic and dikaryotic mycelia adapt to novel environments under natural selection, we serially transferred replicate populations of each ploidy state on minimal medium for 18 months (approximately 13,000 generations). Dikaryotic mycelia responded to selection with increases in growth rate, while haploid monokaryotic mycelia did not. To determine if the haploid components of the dikaryon adapt reciprocally to one another's presence over time, we recovered the intact haploid components of dikaryotic mycelia at different time points (without meiosis) and mated them with nuclei of different evolutionary histories. We found evidence for coadaptation between nuclei in one dikaryotic line, in which a dominant deleterious mutation in one nucleus was followed by a compensatory mutation in the other nucleus; the mutant nuclei that evolved together had the best overall fitness. In other lines, nuclei had equal or higher fitness when paired with nuclei of other histories, indicating a heterozygote advantage. To determine if genetic exchange occurs between the two nuclei of a dikaryon, we developed a 24-locus genotyping system based on single nucleotide polymorphisms to monitor somatic exchange. We observed genetic exchange and recombination between the nuclei of several different dikaryons, resulting in genotypic variation in these mitotic cell lineages.
Full Text
The Full Text of this article is available as a PDF (188.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson M. R., Deppe C. S. Control of fungal development. I. The effects of two regulatory genes on growth in Schizophyllum commune. Dev Biol. 1976 Oct 1;53(1):21–29. doi: 10.1016/0012-1606(76)90205-0. [DOI] [PubMed] [Google Scholar]
- Casselton L. A., Olesnicky N. S. Molecular genetics of mating recognition in basidiomycete fungi. Microbiol Mol Biol Rev. 1998 Mar;62(1):55–70. doi: 10.1128/mmbr.62.1.55-70.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elena Santiago F., Lenski Richard E. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet. 2003 Jun;4(6):457–469. doi: 10.1038/nrg1088. [DOI] [PubMed] [Google Scholar]
- Ellingboe A H. Somatic Recombination in Dikaryon K of Schizophyllum Commune. Genetics. 1964 Feb;49(2):247–251. doi: 10.1093/genetics/49.2.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frankel C. Meiotic-like Recombination in Vegetative Dikaryons of SCHIZOPHYLLUM COMMUNE. Genetics. 1979 Aug;92(4):1121–1126. doi: 10.1093/genetics/92.4.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guettler S., Jackson E. N., Lucchese S. A., Honaas L., Green A., Hittinger C. T., Tian Y., Lilly W. W., Gathman A. C. ESTs from the basidiomycete Schizophyllum commune grown on nitrogen-replete and nitrogen-limited media. Fungal Genet Biol. 2003 Jul;39(2):191–198. doi: 10.1016/s1087-1845(03)00017-3. [DOI] [PubMed] [Google Scholar]
- Kovalchuk Igor, Kovalchuk Olga, Kalck Véronique, Boyko Vitaly, Filkowski Jody, Heinlein Manfred, Hohn Barbara. Pathogen-induced systemic plant signal triggers DNA rearrangements. Nature. 2003 Jun 12;423(6941):760–762. doi: 10.1038/nature01683. [DOI] [PubMed] [Google Scholar]
- Lucht Jan M., Mauch-Mani Brigitte, Steiner Henry-York, Metraux Jean-Pierre, Ryals John, Hohn Barbara. Pathogen stress increases somatic recombination frequency in Arabidopsis. Nat Genet. 2002 Feb 11;30(3):311–314. doi: 10.1038/ng846. [DOI] [PubMed] [Google Scholar]
- Murray M. G., Thompson W. F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980 Oct 10;8(19):4321–4325. doi: 10.1093/nar/8.19.4321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PAPAZIAN H. P. Exchange of incompatibility factors between the nuclei of a dikaryon. Science. 1954 May 14;119(3098):691–693. doi: 10.1126/science.119.3098.691. [DOI] [PubMed] [Google Scholar]
- Raper J R, Miles P G. The Genetics of Schizophyllum Commune. Genetics. 1958 May;43(3):530–546. doi: 10.1093/genetics/43.3.530. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson G. W., Tsay Y. H., Kienzle B. K., Smith-Monroy C. A., Bishop R. W. Conservation between human and fungal squalene synthetases: similarities in structure, function, and regulation. Mol Cell Biol. 1993 May;13(5):2706–2717. doi: 10.1128/mcb.13.5.2706. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SIMCHEN G., JINKS J. L. THE DETERMINATION OF DIKARYOTIC GROWTH RATE IN THE BASIDIOMYCETE SCHIZOPHYLLUM COMMUNE: A BIOMETRICAL ANALYSIS. Heredity (Edinb) 1964 Nov;19:629–649. doi: 10.1038/hdy.1964.75. [DOI] [PubMed] [Google Scholar]
- Saville B. J., Kohli Y., Anderson J. B. mtDNA recombination in a natural population. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):1331–1335. doi: 10.1073/pnas.95.3.1331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simchen G. Monikaryotic variation and haploid selection in Schizophyllum commune. Heredity (Edinb) 1966 May;21(2):241–263. doi: 10.1038/hdy.1966.21. [DOI] [PubMed] [Google Scholar]
- Smith M. L., Duchesne L. C., Bruhn J. N., Anderson J. B. Mitochondrial genetics in a natural population of the plant pathogen armillaria. Genetics. 1990 Nov;126(3):575–582. doi: 10.1093/genetics/126.3.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Specht C. A., Novotny C. P., Ullrich R. C. Mitochondrial DNA of Schizophyllum commune: restriction map, genetic map, and mode of inheritance. Curr Genet. 1992 Aug;22(2):129–134. doi: 10.1007/BF00351472. [DOI] [PubMed] [Google Scholar]
- Tanimoto T., Onodera K., Hosoya T., Takamatsu Y., Kinoshita T., Tago K., Kogen H., Fujioka T., Hamano K., Tsujita Y. Schizostatin, a novel squalene synthase inhibitor produced by the mushroom, Schizophyllum commune. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activities. J Antibiot (Tokyo) 1996 Jul;49(7):617–623. doi: 10.7164/antibiotics.49.617. [DOI] [PubMed] [Google Scholar]
- Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997 Dec 15;25(24):4876–4882. doi: 10.1093/nar/25.24.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]