Skip to main content
Genetics logoLink to Genetics
. 2004 Aug;167(4):1689–1696. doi: 10.1534/genetics.104.028746

Genetic suppression of intronic +1G mutations by compensatory U1 snRNA changes in Caenorhabditis elegans.

Alan M Zahler 1, John D Tuttle 1, Andrew D Chisholm 1
PMCID: PMC1471001  PMID: 15342508

Abstract

Mutations to the canonical +1G of introns, which are commonly found in many human inherited disease alleles, invariably result in aberrant splicing. Here we report genetic findings in C. elegans that aberrant splicing due to +1G mutations can be suppressed by U1 snRNA mutations. An intronic +1G-to-U mutation, e936, in the C. elegans unc-73 gene causes aberrant splicing and loss of gene function. We previously showed that mutation of the sup-39 gene promotes splicing at the mutant splice donor in e936 mutants. We demonstrate here that sup-39 is a U1 snRNA gene; suppressor mutations in sup-39 are compensatory substitutions in the 5' end, which enhance recognition of the mutant splice donor. sup-6(st19) is an allele-specific suppressor of unc-13(e309), which contains an intronic +1G-to-A transition. The e309 mutation activates a cryptic splice site, and sup-6(st19) restores splicing to the mutant splice donor. sup-6 also encodes a U1 snRNA and the mutant contains a compensatory substitution at its 5' end. This is the first demonstration that U1 snRNAs can act to suppress the effects of mutations to the invariant +1G of introns. These findings are suggestive of a potential treatment of certain alleles of inherited human genetic diseases.

Full Text

The Full Text of this article is available as a PDF (211.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ares M., Jr, Weiser B. Rearrangement of snRNA structure during assembly and function of the spliceosome. Prog Nucleic Acid Res Mol Biol. 1995;50:131–159. doi: 10.1016/s0079-6603(08)60813-2. [DOI] [PubMed] [Google Scholar]
  2. Ars E., Serra E., García J., Kruyer H., Gaona A., Lázaro C., Estivill X. Mutations affecting mRNA splicing are the most common molecular defects in patients with neurofibromatosis type 1. Hum Mol Genet. 2000 Jan 22;9(2):237–247. doi: 10.1093/hmg/9.2.237. [DOI] [PubMed] [Google Scholar]
  3. Cohen J. B., Snow J. E., Spencer S. D., Levinson A. D. Suppression of mammalian 5' splice-site defects by U1 small nuclear RNAs from a distance. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10470–10474. doi: 10.1073/pnas.91.22.10470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Forbes D. J., Kirschner M. W., Caput D., Dahlberg J. E., Lund E. Differential expression of multiple U1 small nuclear RNAs in oocytes and embryos of Xenopus laevis. Cell. 1984 Oct;38(3):681–689. doi: 10.1016/0092-8674(84)90263-0. [DOI] [PubMed] [Google Scholar]
  5. Harris Todd W., Lee Raymond, Schwarz Erich, Bradnam Keith, Lawson Daniel, Chen Wen, Blasier Darin, Kenny Eimear, Cunningham Fiona, Kishore Ranjana. WormBase: a cross-species database for comparative genomics. Nucleic Acids Res. 2003 Jan 1;31(1):133–137. doi: 10.1093/nar/gkg053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kohn R. E., Duerr J. S., McManus J. R., Duke A., Rakow T. L., Maruyama H., Moulder G., Maruyama I. N., Barstead R. J., Rand J. B. Expression of multiple UNC-13 proteins in the Caenorhabditis elegans nervous system. Mol Biol Cell. 2000 Oct;11(10):3441–3452. doi: 10.1091/mbc.11.10.3441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Krawczak M., Reiss J., Cooper D. N. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum Genet. 1992 Sep-Oct;90(1-2):41–54. doi: 10.1007/BF00210743. [DOI] [PubMed] [Google Scholar]
  8. Lo P. C., Mount S. M. Drosophila melanogaster genes for U1 snRNA variants and their expression during development. Nucleic Acids Res. 1990 Dec 11;18(23):6971–6979. doi: 10.1093/nar/18.23.6971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lo P. C., Roy D., Mount S. M. Suppressor U1 snRNAs in Drosophila. Genetics. 1994 Oct;138(2):365–378. doi: 10.1093/genetics/138.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Maroney P. A., Romfo C. M., Nilsen T. W. Functional recognition of 5' splice site by U4/U6.U5 tri-snRNP defines a novel ATP-dependent step in early spliceosome assembly. Mol Cell. 2000 Aug;6(2):317–328. doi: 10.1016/s1097-2765(00)00032-0. [DOI] [PubMed] [Google Scholar]
  11. Newman A. J., Lin R. J., Cheng S. C., Abelson J. Molecular consequences of specific intron mutations on yeast mRNA splicing in vivo and in vitro. Cell. 1985 Aug;42(1):335–344. doi: 10.1016/s0092-8674(85)80129-x. [DOI] [PubMed] [Google Scholar]
  12. Newman A., Norman C. Mutations in yeast U5 snRNA alter the specificity of 5' splice-site cleavage. Cell. 1991 Apr 5;65(1):115–123. doi: 10.1016/0092-8674(91)90413-s. [DOI] [PubMed] [Google Scholar]
  13. Parker R., Guthrie C. A point mutation in the conserved hexanucleotide at a yeast 5' splice junction uncouples recognition, cleavage, and ligation. Cell. 1985 May;41(1):107–118. doi: 10.1016/0092-8674(85)90065-0. [DOI] [PubMed] [Google Scholar]
  14. Parker R., Siliciano P. G. Evidence for an essential non-Watson-Crick interaction between the first and last nucleotides of a nuclear pre-mRNA intron. Nature. 1993 Feb 18;361(6413):660–662. doi: 10.1038/361660a0. [DOI] [PubMed] [Google Scholar]
  15. Reyes J. L., Gustafson E. H., Luo H. R., Moore M. J., Konarska M. M. The C-terminal region of hPrp8 interacts with the conserved GU dinucleotide at the 5' splice site. RNA. 1999 Feb;5(2):167–179. doi: 10.1017/s1355838299981785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Reyes J. L., Kois P., Konforti B. B., Konarska M. M. The canonical GU dinucleotide at the 5' splice site is recognized by p220 of the U5 snRNP within the spliceosome. RNA. 1996 Mar;2(3):213–225. [PMC free article] [PubMed] [Google Scholar]
  17. Roller A. B., Hoffman D. C., Zahler A. M. The allele-specific suppressor sup-39 alters use of cryptic splice sites in Caenorhabditis elegans. Genetics. 2000 Mar;154(3):1169–1179. doi: 10.1093/genetics/154.3.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Run J. Q., Steven R., Hung M. S., van Weeghel R., Culotti J. G., Way J. C. Suppressors of the unc-73 gene of Caenorhabditis elegans. Genetics. 1996 May;143(1):225–236. doi: 10.1093/genetics/143.1.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Siliciano P. G., Guthrie C. 5' splice site selection in yeast: genetic alterations in base-pairing with U1 reveal additional requirements. Genes Dev. 1988 Oct;2(10):1258–1267. doi: 10.1101/gad.2.10.1258. [DOI] [PubMed] [Google Scholar]
  20. Stenson Peter D., Ball Edward V., Mort Matthew, Phillips Andrew D., Shiel Jacqueline A., Thomas Nick S. T., Abeysinghe Shaun, Krawczak Michael, Cooper David N. Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat. 2003 Jun;21(6):577–581. doi: 10.1002/humu.10212. [DOI] [PubMed] [Google Scholar]
  21. Steven R., Kubiseski T. J., Zheng H., Kulkarni S., Mancillas J., Ruiz Morales A., Hogue C. W., Pawson T., Culotti J. UNC-73 activates the Rac GTPase and is required for cell and growth cone migrations in C. elegans. Cell. 1998 Mar 20;92(6):785–795. doi: 10.1016/s0092-8674(00)81406-3. [DOI] [PubMed] [Google Scholar]
  22. Teraoka S. N., Telatar M., Becker-Catania S., Liang T., Onengüt S., Tolun A., Chessa L., Sanal O., Bernatowska E., Gatti R. A. Splicing defects in the ataxia-telangiectasia gene, ATM: underlying mutations and consequences. Am J Hum Genet. 1999 Jun;64(6):1617–1631. doi: 10.1086/302418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Thomas J., Lea K., Zucker-Aprison E., Blumenthal T. The spliceosomal snRNAs of Caenorhabditis elegans. Nucleic Acids Res. 1990 May 11;18(9):2633–2642. doi: 10.1093/nar/18.9.2633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wicks S. R., Yeh R. T., Gish W. R., Waterston R. H., Plasterk R. H. Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nat Genet. 2001 Jun;28(2):160–164. doi: 10.1038/88878. [DOI] [PubMed] [Google Scholar]
  25. Zhuang Y., Leung H., Weiner A. M. The natural 5' splice site of simian virus 40 large T antigen can be improved by increasing the base complementarity to U1 RNA. Mol Cell Biol. 1987 Aug;7(8):3018–3020. doi: 10.1128/mcb.7.8.3018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zhuang Y., Weiner A. M. A compensatory base change in U1 snRNA suppresses a 5' splice site mutation. Cell. 1986 Sep 12;46(6):827–835. doi: 10.1016/0092-8674(86)90064-4. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES