Skip to main content
Genetics logoLink to Genetics
. 2004 Aug;167(4):1905–1914. doi: 10.1534/genetics.103.023580

Comparative mapping of a major aluminum tolerance gene in sorghum and other species in the poaceae.

Jurandir V Magalhaes 1, David F Garvin 1, Yihong Wang 1, Mark E Sorrells 1, Patricia E Klein 1, Robert E Schaffert 1, Li Li 1, Leon V Kochian 1
PMCID: PMC1471010  PMID: 15342528

Abstract

In several crop species within the Triticeae tribe of the grass family Poaceae, single major aluminum (Al) tolerance genes have been identified that effectively mitigate Al toxicity, a major abiotic constraint to crop production on acidic soils. However, the trait is quantitatively inherited in species within other tribes, and the possible ancestral relationships between major Al tolerance genes and QTL in the grasses remain unresolved. To help establish these relationships, we conducted a molecular genetic analysis of Al tolerance in sorghum and integrated our findings with those from previous studies performed in crop species belonging to different grass tribes. A single locus, AltSB, was found to control Al tolerance in two highly Al tolerant sorghum cultivars. Significant macrosynteny between sorghum and the Triticeae was observed for molecular markers closely linked to putatively orthologous Al tolerance loci present in the group 4 chromosomes of wheat, barley, and rye. However, AltSB was not located within the homeologous region of sorghum but rather mapped near the end of sorghum chromosome 3. Thus, AltSB not only is the first major Al tolerance gene mapped in a grass species that does not belong to the Triticeae, but also appears to be different from the major Al tolerance locus in the Triticeae. Intertribe map comparisons suggest that a major Al tolerance QTL on rice chromosome 1 is likely to be orthologous to AltSB, whereas another rice QTL on chromosome 3 is likely to correspond to the Triticeae group 4 Al tolerance locus. Therefore, this study demonstrates a clear evolutionary link between genes and QTL encoding the same trait in distantly related species within a single plant family.

Full Text

The Full Text of this article is available as a PDF (339.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahn S., Anderson J. A., Sorrells M. E., Tanksley S. D. Homoeologous relationships of rice, wheat and maize chromosomes. Mol Gen Genet. 1993 Dec;241(5-6):483–490. doi: 10.1007/BF00279889. [DOI] [PubMed] [Google Scholar]
  2. Bennetzen Jeffrey L., Ramakrishna Wusirika. Numerous small rearrangements of gene content, order and orientation differentiate grass genomes. Plant Mol Biol. 2002 Mar-Apr;48(5-6):821–827. doi: 10.1023/a:1014841515249. [DOI] [PubMed] [Google Scholar]
  3. Bernatzky R., Tanksley S. D. Toward a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genetics. 1986 Apr;112(4):887–898. doi: 10.1093/genetics/112.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  5. Gale M. D., Devos K. M. Comparative genetics in the grasses. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):1971–1974. doi: 10.1073/pnas.95.5.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hu F. Y., Tao D. Y., Sacks E., Fu B. Y., Xu P., Li J., Yang Y., McNally K., Khush G. S., Paterson A. H. Convergent evolution of perenniality in rice and sorghum. Proc Natl Acad Sci U S A. 2003 Mar 17;100(7):4050–4054. doi: 10.1073/pnas.0630531100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kellogg E. A. Relationships of cereal crops and other grasses. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2005–2010. doi: 10.1073/pnas.95.5.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kilian A., Chen J., Han F., Steffenson B., Kleinhofs A. Towards map-based cloning of the barley stem rust resistance genes Rpg1 and rpg4 using rice as an intergenomic cloning vehicle. Plant Mol Biol. 1997 Sep;35(1-2):187–195. [PubMed] [Google Scholar]
  9. Klein Patricia E., Klein Robert R., Vrebalov Julia, Mullet John E. Sequence-based alignment of sorghum chromosome 3 and rice chromosome 1 reveals extensive conservation of gene order and one major chromosomal rearrangement. Plant J. 2003 Jun;34(5):605–621. doi: 10.1046/j.1365-313x.2003.01751.x. [DOI] [PubMed] [Google Scholar]
  10. Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
  11. Li Wanlong, Gill Bikram S. The colinearity of the Sh2/A1 orthologous region in rice, sorghum and maize is interrupted and accompanied by genome expansion in the triticeae. Genetics. 2002 Mar;160(3):1153–1162. doi: 10.1093/genetics/160.3.1153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lin Y. R., Schertz K. F., Paterson A. H. Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics. 1995 Sep;141(1):391–411. doi: 10.1093/genetics/141.1.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ma Jian Feng, Shen Renfang, Zhao Zhuqing, Wissuwa Matthias, Takeuchi Yoshinobu, Ebitani Takeshi, Yano Masahiro. Response of rice to Al stress and identification of quantitative trait Loci for Al tolerance. Plant Cell Physiol. 2002 Jun;43(6):652–659. doi: 10.1093/pcp/pcf081. [DOI] [PubMed] [Google Scholar]
  14. Menz M. A., Klein R. R., Mullet J. E., Obert J. A., Unruh N. C., Klein P. E. A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP, RFLP and SSR markers. Plant Mol Biol. 2002 Mar-Apr;48(5-6):483–499. doi: 10.1023/a:1014831302392. [DOI] [PubMed] [Google Scholar]
  15. Michelmore R. W., Paran I., Kesseli R. V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9828–9832. doi: 10.1073/pnas.88.21.9828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nelson J. C., Deynze A. E., Sorrells M. E., Autrique E., Lu Y. H., Negre S., Bernard M., Leroy P. Molecular mapping of wheat. Homoeologous group 3. Genome. 1995 Jun;38(3):525–533. doi: 10.1139/g95-068. [DOI] [PubMed] [Google Scholar]
  17. Nguyen Bay D., Brar Darshan S., Bui Buu C., Nguyen Tao V., Pham Luong N., Nguyen Henry T. Identification and mapping of the QTL for aluminum tolerance introgressed from the new source, Oryza Rufipogon Griff., into indica rice (Oryza sativa L.). Theor Appl Genet. 2002 Oct 25;106(4):583–593. doi: 10.1007/s00122-002-1072-4. [DOI] [PubMed] [Google Scholar]
  18. Nguyen V. T., Nguyen B. D., Sarkarung S., Martinez C., Paterson A. H., Nguyen H. T. Mapping of genes controlling aluminum tolerance in rice: comparison of different genetic backgrounds. Mol Genet Genomics. 2002 Jun 7;267(6):772–780. doi: 10.1007/s00438-002-0686-1. [DOI] [PubMed] [Google Scholar]
  19. Paterson A. H., Lin Y. R., Li Z., Schertz K. F., Doebley J. F., Pinson S. R., Liu S. C., Stansel J. W., Irvine J. E. Convergent domestication of cereal crops by independent mutations at corresponding genetic Loci. Science. 1995 Sep 22;269(5231):1714–1718. doi: 10.1126/science.269.5231.1714. [DOI] [PubMed] [Google Scholar]
  20. Pereira M. G., Lee M., Bramel-Cox P., Woodman W., Doebley J., Whitkus R. Construction of an RFLP map in sorghum and comparative mapping in maize. Genome. 1994 Apr;37(2):236–243. doi: 10.1139/g94-033. [DOI] [PubMed] [Google Scholar]
  21. Tikhonov A. P., SanMiguel P. J., Nakajima Y., Gorenstein N. M., Bennetzen J. L., Avramova Z. Colinearity and its exceptions in orthologous adh regions of maize and sorghum. Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7409–7414. doi: 10.1073/pnas.96.13.7409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Van Deynze A. E., Nelson J. C., Yglesias E. S., Harrington S. E., Braga D. P., McCouch S. R., Sorrells M. E. Comparative mapping in grasses. Wheat relationships. Mol Gen Genet. 1995 Oct 25;248(6):744–754. doi: 10.1007/BF02191715. [DOI] [PubMed] [Google Scholar]
  23. Vos P., Hogers R., Bleeker M., Reijans M., van de Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995 Nov 11;23(21):4407–4414. doi: 10.1093/nar/23.21.4407. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES