Skip to main content
Genetics logoLink to Genetics
. 2004 Aug;167(4):2133–2137. doi: 10.1534/genetics.103.024844

A fast algorithm for functional mapping of complex traits.

Wei Zhao 1, Rongling Wu 1, Chang-Xing Ma 1, George Casella 1
PMCID: PMC1471016  PMID: 15342547

Abstract

By integrating the underlying developmental mechanisms for the phenotypic formation of traits into a mapping framework, functional mapping has emerged as an important statistical approach for mapping complex traits. In this note, we explore the feasibility of using the simplex algorithm as an alternative to solve the mixture-based likelihood for functional mapping of complex traits. The results from the simplex algorithm are consistent with those from the traditional EM algorithm, but the simplex algorithm has considerably reduced computational times. Moreover, because of its nonderivative nature and easy implementation with current software, the simplex algorithm enjoys an advantage over the EM algorithm in the dynamic modeling and analysis of complex traits.

Full Text

The Full Text of this article is available as a PDF (73.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carlborg O., Andersson L., Kinghorn B. The use of a genetic algorithm for simultaneous mapping of multiple interacting quantitative trait loci. Genetics. 2000 Aug;155(4):2003–2010. doi: 10.1093/genetics/155.4.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ibáez P., Lohmann E., Pollak P., Durif F., Tranchant C., Agid Y., Dürr A., Brice A., French Parkinson's Disease Genetics Study Group Absence of NR4A2 exon 1 mutations in 108 families with autosomal dominant Parkinson disease. Neurology. 2004 Jun 8;62(11):2133–2134. doi: 10.1212/01.wnl.0000127496.23198.75. [DOI] [PubMed] [Google Scholar]
  3. Jansen R. C., Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics. 1994 Apr;136(4):1447–1455. doi: 10.1093/genetics/136.4.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Knott S. A., Haley C. S. Multitrait least squares for quantitative trait loci detection. Genetics. 2000 Oct;156(2):899–911. doi: 10.1093/genetics/156.2.899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Liu X., Oliver F., Brown S. D., Denny P., Keightley P. D. High-resolution quantitative trait locus mapping for body weight in mice by recombinant progeny testing. Genet Res. 2001 Apr;77(2):191–197. doi: 10.1017/s0016672301004943. [DOI] [PubMed] [Google Scholar]
  7. Ma Chang-Xing, Casella George, Wu Rongling. Functional mapping of quantitative trait loci underlying the character process: a theoretical framework. Genetics. 2002 Aug;161(4):1751–1762. doi: 10.1093/genetics/161.4.1751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Nakamichi R., Ukai Y., Kishino H. Detection of closely linked multiple quantitative trait loci using a genetic algorithm. Genetics. 2001 May;158(1):463–475. doi: 10.1093/genetics/158.1.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Pérez-Enciso M., Varona L. Quantitative trait loci mapping in F(2) crosses between outbred lines. Genetics. 2000 May;155(1):391–405. doi: 10.1093/genetics/155.1.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Pérez-Enciso Miguel, Clop Alex, Folch Josep M., Sánchez Armand, Oliver Maria A., Ovilo Cristina, Barragán C., Varona Luis, Noguera José L. Exploring alternative models for sex-linked quantitative trait loci in outbred populations: application to an iberian x landrace pig intercross. Genetics. 2002 Aug;161(4):1625–1632. doi: 10.1093/genetics/161.4.1625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sillanpä M. J., Arjas E. Bayesian mapping of multiple quantitative trait loci from incomplete outbred offspring data. Genetics. 1999 Apr;151(4):1605–1619. doi: 10.1093/genetics/151.4.1605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Wolf Jason B. The geometry of phenotypic evolution in developmental hyperspace. Proc Natl Acad Sci U S A. 2002 Dec 2;99(25):15849–15851. doi: 10.1073/pnas.012686699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Wu Rongling, Ma Chang-Xing, Littell Ramon C., Wu Sameul S., Yin Tongmingyin, Huang Minren, Wang Mingxiu, Casella George. A logistic mixture model for characterizing genetic determinants causing differentiation in growth trajectories. Genet Res. 2002 Jun;79(3):235–245. doi: 10.1017/s0016672302005633. [DOI] [PubMed] [Google Scholar]
  14. Yin Tongming, Zhang Xinye, Huang Minren, Wang Minxiu, Zhuge Qiang, Tu Shengming, Zhu Li-Huang, Wu Rongling. Molecular linkage maps of the Populus genome. Genome. 2002 Jun;45(3):541–555. doi: 10.1139/g02-013. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES