Skip to main content
Genetics logoLink to Genetics
. 2004 Aug;167(4):1949–1959. doi: 10.1534/genetics.104.026997

The inheritance and evolution of leaf pigmentation and pubescence in teosinte.

Nick Lauter 1, Charles Gustus 1, Anna Westerbergh 1, John Doebley 1
PMCID: PMC1471017  PMID: 15342532

Abstract

To investigate the genetic mechanisms that underlie morphological evolution in natural populations, we employed QTL mapping to dissect the inheritance of leaf sheath characters that distinguish Chalco from Balsas teosinte. Abundant macrohairs (trichomes) and intense anthocyanin accumulation are found in Chalco teosinte sheaths whereas Balsas teosinte leaf sheaths are green and glabrous. These character states may represent adaptations to the cooler highland (Chalco) vs. warmer middle-elevation (Balsas) climates. QTL mapping in multiple populations revealed a mix of major- and minor-effect QTL affecting both sheath color (anthocyanin) and macrohair abundance. The major QTL for macrohairs accounts for 52% of the parental difference. Epistatic interactions were detected between the major-effect QTL and multiple other QTL for both traits, accounting for substantial portions of phenotypic variance. Developmental analyses suggest that regulatory program changes underlie the phenotypic differences. Sheath anthocyanin QTL are clearly associated with b1 and a3, both of which are regulators of anthocyanin biosynthesis. Our findings suggest that changes in a small number of QTL can lead to morphological evolution by modulating existing developmental programs.

Full Text

The Full Text of this article is available as a PDF (305.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradshaw H. D., Jr, Otto K. G., Frewen B. E., McKay J. K., Schemske D. W. Quantitative trait loci affecting differences in floral morphology between two species of monkeyflower (Mimulus). Genetics. 1998 May;149(1):367–382. doi: 10.1093/genetics/149.1.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burke John M., Tang Shunxue, Knapp Steven J., Rieseberg Loren H. Genetic analysis of sunflower domestication. Genetics. 2002 Jul;161(3):1257–1267. doi: 10.1093/genetics/161.3.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chandler V. L., Radicella J. P., Robbins T. P., Chen J., Turks D. Two regulatory genes of the maize anthocyanin pathway are homologous: isolation of B utilizing R genomic sequences. Plant Cell. 1989 Dec;1(12):1175–1183. doi: 10.1105/tpc.1.12.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Churchill G. A., Doerge R. W. Empirical threshold values for quantitative trait mapping. Genetics. 1994 Nov;138(3):963–971. doi: 10.1093/genetics/138.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clark A. G., Wang L. Epistasis in measured genotypes: Drosophila P-element insertions. Genetics. 1997 Sep;147(1):157–163. doi: 10.1093/genetics/147.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Doebley J., Stec A., Gustus C. teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics. 1995 Sep;141(1):333–346. doi: 10.1093/genetics/141.1.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Doebley J., Stec A. Inheritance of the morphological differences between maize and teosinte: comparison of results for two F2 populations. Genetics. 1993 Jun;134(2):559–570. doi: 10.1093/genetics/134.2.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eshed Y., Zamir D. Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics. 1996 Aug;143(4):1807–1817. doi: 10.1093/genetics/143.4.1807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fishman Lila, Kelly Alan J., Willis John H. Minor quantitative trait loci underlie floral traits associated with mating system divergence in Mimulus. Evolution. 2002 Nov;56(11):2138–2155. doi: 10.1111/j.0014-3820.2002.tb00139.x. [DOI] [PubMed] [Google Scholar]
  10. Helentjaris T., Weber D., Wright S. Identification of the genomic locations of duplicate nucleotide sequences in maize by analysis of restriction fragment length polymorphisms. Genetics. 1988 Feb;118(2):353–363. doi: 10.1093/genetics/118.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Herman P. L., Marks M. D. Trichome Development in Arabidopsis thaliana. II. Isolation and Complementation of the GLABROUS1 Gene. Plant Cell. 1989 Nov;1(11):1051–1055. doi: 10.1105/tpc.1.11.1051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holton T. A., Cornish E. C. Genetics and Biochemistry of Anthocyanin Biosynthesis. Plant Cell. 1995 Jul;7(7):1071–1083. doi: 10.1105/tpc.7.7.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kim S. C., Rieseberg L. H. The contribution of epistasis to species differences in annual sunflowers. Mol Ecol. 2001 Mar;10(3):683–690. doi: 10.1046/j.1365-294x.2001.01203.x. [DOI] [PubMed] [Google Scholar]
  14. Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
  15. Lauter Nick, Doebley John. Genetic variation for phenotypically invariant traits detected in teosinte: implications for the evolution of novel forms. Genetics. 2002 Jan;160(1):333–342. doi: 10.1093/genetics/160.1.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Long A. D., Mullaney S. L., Reid L. A., Fry J. D., Langley C. H., Mackay T. F. High resolution mapping of genetic factors affecting abdominal bristle number in Drosophila melanogaster. Genetics. 1995 Mar;139(3):1273–1291. doi: 10.1093/genetics/139.3.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Moose Stephen P., Lauter Nick, Carlson Shawn R. The maize macrohairless1 locus specifically promotes leaf blade macrohair initiation and responds to factors regulating leaf identity. Genetics. 2004 Mar;166(3):1451–1461. doi: 10.1534/genetics.166.3.1451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Oppenheimer D. G., Herman P. L., Sivakumaran S., Esch J., Marks M. D. A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules. Cell. 1991 Nov 1;67(3):483–493. doi: 10.1016/0092-8674(91)90523-2. [DOI] [PubMed] [Google Scholar]
  19. Payne C. T., Zhang F., Lloyd A. M. GL3 encodes a bHLH protein that regulates trichome development in arabidopsis through interaction with GL1 and TTG1. Genetics. 2000 Nov;156(3):1349–1362. doi: 10.1093/genetics/156.3.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Radicella J. P., Brown D., Tolar L. A., Chandler V. L. Allelic diversity of the maize B regulatory gene: different leader and promoter sequences of two B alleles determine distinct tissue specificities of anthocyanin production. Genes Dev. 1992 Nov;6(11):2152–2164. doi: 10.1101/gad.6.11.2152. [DOI] [PubMed] [Google Scholar]
  21. Schemske D. W., Bradshaw H. D., Jr Pollinator preference and the evolution of floral traits in monkeyflowers (Mimulus). Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):11910–11915. doi: 10.1073/pnas.96.21.11910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Selinger D. A., Chandler V. L. Major recent and independent changes in levels and patterns of expression have occurred at the b gene, a regulatory locus in maize. Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):15007–15012. doi: 10.1073/pnas.96.26.15007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stuber C. W., Lincoln S. E., Wolff D. W., Helentjaris T., Lander E. S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics. 1992 Nov;132(3):823–839. doi: 10.1093/genetics/132.3.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Walker A. R., Davison P. A., Bolognesi-Winfield A. C., James C. M., Srinivasan N., Blundell T. L., Esch J. J., Marks M. D., Gray J. C. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell. 1999 Jul;11(7):1337–1350. doi: 10.1105/tpc.11.7.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Westerbergh Anna, Doebley John. Morphological traits defining species differences in wild relatives of maize are controlled by multiple quantitative trait loci. Evolution. 2002 Feb;56(2):273–283. doi: 10.1111/j.0014-3820.2002.tb01337.x. [DOI] [PubMed] [Google Scholar]
  26. Xiao J., Li J., Yuan L., Tanksley S. D. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics. 1995 Jun;140(2):745–754. doi: 10.1093/genetics/140.2.745. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES