Skip to main content
Genetics logoLink to Genetics
. 2004 Aug;167(4):1585–1595. doi: 10.1534/genetics.104.029207

The high-mobility group A-type protein CarD of the bacterium Myxococcus xanthus as a transcription factor for several distinct vegetative genes.

Marisa Galbis-Martínez 1, Marta Fontes 1, Francisco J Murillo 1
PMCID: PMC1471020  PMID: 15342500

Abstract

CarD is the only reported prokaryotic protein showing structural and functional features typical of eukaryotic high-mobility group A transcription factors. In prokaryotes, proteins similar to CarD appear to be confined primarily to myxobacteria. In Myxococcus xanthus, CarD has been previously shown to act as a positive element in two different regulatory networks: one for light-induced synthesis of carotenoids and the other for starvation-induced fruiting body formation. We have now tested the effect of a loss-of-function mutation in the carD gene (carD1) on the expression of a random collection of lacZ-tagged genes, which are normally expressed in the dark during vegetative growth in rich medium. Our results indicate that CarD plays a significant role in the transcriptional regulation of various indicated genes. The carD1 mutation downregulates some genes and upregulates others. Also reported here is the isolation of several mutations that suppress the strong effect of carD1 on the expression of a particular vegetative gene. One of them (sud-2) also suppresses the effect of carD1 on other vegetative genes and on fruiting-body formation. Thus, CarD and the sud-2 gene product appear to participate in a single mechanism, which underlies various apparently diverse regulatory phenomena ascribed to CarD.

Full Text

The Full Text of this article is available as a PDF (426.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aravind L., Landsman D. AT-hook motifs identified in a wide variety of DNA-binding proteins. Nucleic Acids Res. 1998 Oct 1;26(19):4413–4421. doi: 10.1093/nar/26.19.4413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Avery L., Kaiser D. In situ transposon replacement and isolation of a spontaneous tandem genetic duplication. Mol Gen Genet. 1983;191(1):99–109. doi: 10.1007/BF00330896. [DOI] [PubMed] [Google Scholar]
  3. Bagga R., Emerson B. M. An HMG I/Y-containing repressor complex and supercoiled DNA topology are critical for long-range enhancer-dependent transcription in vitro. Genes Dev. 1997 Mar 1;11(5):629–639. doi: 10.1101/gad.11.5.629. [DOI] [PubMed] [Google Scholar]
  4. Balsalobre J. M., Ruiz-Vazquez R. M., Murillo F. J. Light induction of gene expression in Myxococcus xanthus. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2359–2362. doi: 10.1073/pnas.84.8.2359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bibb M. J., Findlay P. R., Johnson M. W. The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences. Gene. 1984 Oct;30(1-3):157–166. doi: 10.1016/0378-1119(84)90116-1. [DOI] [PubMed] [Google Scholar]
  6. Bretscher A. P., Kaiser D. Nutrition of Myxococcus xanthus, a fruiting myxobacterium. J Bacteriol. 1978 Feb;133(2):763–768. doi: 10.1128/jb.133.2.763-768.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bustin M. Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins. Mol Cell Biol. 1999 Aug;19(8):5237–5246. doi: 10.1128/mcb.19.8.5237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bustin M. Revised nomenclature for high mobility group (HMG) chromosomal proteins. Trends Biochem Sci. 2001 Mar;26(3):152–153. doi: 10.1016/s0968-0004(00)01777-1. [DOI] [PubMed] [Google Scholar]
  9. Campos J. M., Geisselsoder J., Zusman D. R. Isolation of bacteriophage MX4, a generalized transducing phage for Myxococcus xanthus. J Mol Biol. 1978 Feb 25;119(2):167–178. doi: 10.1016/0022-2836(78)90431-x. [DOI] [PubMed] [Google Scholar]
  10. Casadaban M. J., Cohen S. N. Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol. 1980 Apr;138(2):179–207. doi: 10.1016/0022-2836(80)90283-1. [DOI] [PubMed] [Google Scholar]
  11. Cayuela María L., Elías-Arnanz Montserrat, Peñalver-Mellado Marcos, Padmanabhan S., Murillo Francisco J. The Stigmatella aurantiaca homolog of Myxococcus xanthus high-mobility-group A-type transcription factor CarD: insights into the functional modules of CarD and their distribution in bacteria. J Bacteriol. 2003 Jun;185(12):3527–3537. doi: 10.1128/JB.185.12.3527-3537.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Colland F., Barth M., Hengge-Aronis R., Kolb A. sigma factor selectivity of Escherichia coli RNA polymerase: role for CRP, IHF and lrp transcription factors. EMBO J. 2000 Jun 15;19(12):3028–3037. doi: 10.1093/emboj/19.12.3028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Falvo J. V., Thanos D., Maniatis T. Reversal of intrinsic DNA bends in the IFN beta gene enhancer by transcription factors and the architectural protein HMG I(Y). Cell. 1995 Dec 29;83(7):1101–1111. doi: 10.1016/0092-8674(95)90137-x. [DOI] [PubMed] [Google Scholar]
  14. Fontes M., Ruiz-Vázquez R., Murillo F. J. Growth phase dependence of the activation of a bacterial gene for carotenoid synthesis by blue light. EMBO J. 1993 Apr;12(4):1265–1275. doi: 10.1002/j.1460-2075.1993.tb05771.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fontes Marta, Galbis-Martínez Lilian, Murillo Francisco J. A novel regulatory gene for light-induced carotenoid synthesis in the bacterium Myxococcus xanthus. Mol Microbiol. 2003 Jan;47(2):561–571. doi: 10.1046/j.1365-2958.2003.03319.x. [DOI] [PubMed] [Google Scholar]
  16. Gill R. E., Cull M. G., Fly S. Genetic identification and cloning of a gene required for developmental cell interactions in Myxococcus xanthus. J Bacteriol. 1988 Nov;170(11):5279–5288. doi: 10.1128/jb.170.11.5279-5288.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gorham H. C., McGowan S. J., Robson P. R., Hodgson D. A. Light-induced carotenogenesis in Myxococcus xanthus: light-dependent membrane sequestration of ECF sigma factor CarQ by anti-sigma factor CarR. Mol Microbiol. 1996 Jan;19(1):171–186. doi: 10.1046/j.1365-2958.1996.360888.x. [DOI] [PubMed] [Google Scholar]
  18. Hodgson D. A. Light-induced carotenogenesis in Myxococcus xanthus: genetic analysis of the carR region. Mol Microbiol. 1993 Feb;7(3):471–488. doi: 10.1111/j.1365-2958.1993.tb01138.x. [DOI] [PubMed] [Google Scholar]
  19. Kaiser D., Losick R. How and why bacteria talk to each other. Cell. 1993 Jun 4;73(5):873–885. doi: 10.1016/0092-8674(93)90268-u. [DOI] [PubMed] [Google Scholar]
  20. Kroos L., Kaiser D. Construction of Tn5 lac, a transposon that fuses lacZ expression to exogenous promoters, and its introduction into Myxococcus xanthus. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5816–5820. doi: 10.1073/pnas.81.18.5816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kyrpides N. C., Ouzounis C. A. The eubacterial transcriptional activator Lrp is present in the archaeon Pyrococcus furiosus. Trends Biochem Sci. 1995 Apr;20(4):140–141. doi: 10.1016/s0968-0004(00)88988-4. [DOI] [PubMed] [Google Scholar]
  22. Lazdunski C. J., Bouveret E., Rigal A., Journet L., Lloubès R., Bénédetti H. Colicin import into Escherichia coli cells. J Bacteriol. 1998 Oct;180(19):4993–5002. doi: 10.1128/jb.180.19.4993-5002.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lonetto M. A., Brown K. L., Rudd K. E., Buttner M. J. Analysis of the Streptomyces coelicolor sigE gene reveals the existence of a subfamily of eubacterial RNA polymerase sigma factors involved in the regulation of extracytoplasmic functions. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7573–7577. doi: 10.1073/pnas.91.16.7573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Martínez-Argudo I., Ruiz-Vázquez R. M., Murillo F. J. The structure of an ECF-sigma-dependent, light-inducible promoter from the bacterium Myxococcus xanthus. Mol Microbiol. 1998 Nov;30(4):883–893. doi: 10.1046/j.1365-2958.1998.01129.x. [DOI] [PubMed] [Google Scholar]
  25. McGowan S. J., Gorham H. C., Hodgson D. A. Light-induced carotenogenesis in Myxococcus xanthus: DNA sequence analysis of the carR region. Mol Microbiol. 1993 Nov;10(4):713–735. doi: 10.1111/j.1365-2958.1993.tb00943.x. [DOI] [PubMed] [Google Scholar]
  26. Moeck G. S., Coulton J. W. TonB-dependent iron acquisition: mechanisms of siderophore-mediated active transport. Mol Microbiol. 1998 May;28(4):675–681. doi: 10.1046/j.1365-2958.1998.00817.x. [DOI] [PubMed] [Google Scholar]
  27. Moreno A. J., Fontes M., Murillo F. J. ihfA gene of the bacterium Myxococcus xanthus and its role in activation of carotenoid genes by blue light. J Bacteriol. 2001 Jan;183(2):557–569. doi: 10.1128/JB.183.2.557-569.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Newman E. B., Lin R. Leucine-responsive regulatory protein: a global regulator of gene expression in E. coli. Annu Rev Microbiol. 1995;49:747–775. doi: 10.1146/annurev.mi.49.100195.003531. [DOI] [PubMed] [Google Scholar]
  29. Nicolas F. J., Cayuela M. L., Martínez-Argudo I. M., Ruiz-Vazquez R. M., Murillo F. J. High mobility group I(Y)-like DNA-binding domains on a bacterial transcription factor. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):6881–6885. doi: 10.1073/pnas.93.14.6881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nicolás F. J., Ruiz-Vázquez R. M., Murillo F. J. A genetic link between light response and multicellular development in the bacterium Myxococcus xanthus. Genes Dev. 1994 Oct 1;8(19):2375–2387. doi: 10.1101/gad.8.19.2375. [DOI] [PubMed] [Google Scholar]
  31. Nikaido H. Antibiotic resistance caused by gram-negative multidrug efflux pumps. Clin Infect Dis. 1998 Aug;27 (Suppl 1):S32–S41. doi: 10.1086/514920. [DOI] [PubMed] [Google Scholar]
  32. Norrander J., Kempe T., Messing J. Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene. 1983 Dec;26(1):101–106. doi: 10.1016/0378-1119(83)90040-9. [DOI] [PubMed] [Google Scholar]
  33. Padmanabhan S., Elías-Arnanz M., Carpio E., Aparicio P., Murillo F. J. Domain architecture of a high mobility group A-type bacterial transcriptional factor. J Biol Chem. 2001 Aug 31;276(45):41566–41575. doi: 10.1074/jbc.M106352200. [DOI] [PubMed] [Google Scholar]
  34. Reeves R., Nissen M. S. The A.T-DNA-binding domain of mammalian high mobility group I chromosomal proteins. A novel peptide motif for recognizing DNA structure. J Biol Chem. 1990 May 25;265(15):8573–8582. [PubMed] [Google Scholar]
  35. Ruiz-Vázquez R., Murillo F. J. Abnormal motility and fruiting behavior of Myxococcus xanthus bacteriophage-resistant strains induced by a clear-plaque mutant of bacteriophage Mx8. J Bacteriol. 1984 Nov;160(2):818–821. doi: 10.1128/jb.160.2.818-821.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Short J. M., Fernandez J. M., Sorge J. A., Huse W. D. Lambda ZAP: a bacteriophage lambda expression vector with in vivo excision properties. Nucleic Acids Res. 1988 Aug 11;16(15):7583–7600. doi: 10.1093/nar/16.15.7583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wall D., Kolenbrander P. E., Kaiser D. The Myxococcus xanthus pilQ (sglA) gene encodes a secretin homolog required for type IV pilus biogenesis, social motility, and development. J Bacteriol. 1999 Jan;181(1):24–33. doi: 10.1128/jb.181.1.24-33.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Yie J., Liang S., Merika M., Thanos D. Intra- and intermolecular cooperative binding of high-mobility-group protein I(Y) to the beta-interferon promoter. Mol Cell Biol. 1997 Jul;17(7):3649–3662. doi: 10.1128/mcb.17.7.3649. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES