Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Dec 1;25(23):4723–4729. doi: 10.1093/nar/25.23.4723

Conformation of the 3'-end of beet necrotic yellow vein benevirus RNA 3 analysed by chemical and enzymatic probing and mutagenesis.

E Lauber 1, H Guilley 1, K Richards 1, G Jonard 1, D Gilmer 1
PMCID: PMC147105  PMID: 9365250

Abstract

Secondary structure-sensitive chemical and enzymatic probes have been used to produce a model for the folding of the last 68 residues of the 3'-non-coding region of beet necrotic yellow vein benevirus RNA 3. The structure consists of two stem-loops separated by a single-stranded region. RNA 3-derived transcripts were produced containing mutations which either disrupted base pairing in the helices or maintained the helices but with alterations in the base pairing scheme. Other mutants contained substitutions in single-stranded regions (loops or bulged sequences). With a few exceptions all three types of mutation abolished RNA 3 replication in vivo, suggesting that both secondary structure and specific sequences are required for efficient recognition of the 3'-terminal region of RNA 3 by viral RNA-dependent RNA polymerase.

Full Text

The Full Text of this article is available as a PDF (225.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baudin F., Ehresmann C., Romby P., Mougel M., Colin J., Lempereur L., Bachellerie J. P., Ebel J. P., Ehresmann B. Higher-order structure of domain III in Escherichia coli 16S ribosomal RNA, 30S subunit and 70S ribosome. Biochimie. 1987 Oct;69(10):1081–1096. doi: 10.1016/0300-9084(87)90008-3. [DOI] [PubMed] [Google Scholar]
  2. Dock-Bregeon A. C., Moras D. Conformational changes and dynamics of tRNAs: evidence from hydrolysis patterns. Cold Spring Harb Symp Quant Biol. 1987;52:113–121. doi: 10.1101/sqb.1987.052.01.016. [DOI] [PubMed] [Google Scholar]
  3. Ehresmann C., Baudin F., Mougel M., Romby P., Ebel J. P., Ehresmann B. Probing the structure of RNAs in solution. Nucleic Acids Res. 1987 Nov 25;15(22):9109–9128. doi: 10.1093/nar/15.22.9109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gilmer D., Allmang C., Ehresmann C., Guilley H., Richards K., Jonard G., Ehresmann B. The secondary structure of the 5'-noncoding region of beet necrotic yellow vein virus RNA 3: evidence for a role in viral RNA replication. Nucleic Acids Res. 1993 Mar 25;21(6):1389–1395. doi: 10.1093/nar/21.6.1389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gilmer D., Bouzoubaa S., Hehn A., Guilley H., Richards K., Jonard G. Efficient cell-to-cell movement of beet necrotic yellow vein virus requires 3' proximal genes located on RNA 2. Virology. 1992 Jul;189(1):40–47. doi: 10.1016/0042-6822(92)90679-j. [DOI] [PubMed] [Google Scholar]
  6. Gilmer D., Richards K., Jonard G., Guilley H. cis-active sequences near the 5'-termini of beet necrotic yellow vein virus RNAs 3 and 4. Virology. 1992 Sep;190(1):55–67. doi: 10.1016/0042-6822(92)91192-w. [DOI] [PubMed] [Google Scholar]
  7. Herschlag D. RNA chaperones and the RNA folding problem. J Biol Chem. 1995 Sep 8;270(36):20871–20874. doi: 10.1074/jbc.270.36.20871. [DOI] [PubMed] [Google Scholar]
  8. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
  9. Jaeger J. A., Turner D. H., Zuker M. Improved predictions of secondary structures for RNA. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7706–7710. doi: 10.1073/pnas.86.20.7706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jupin I., Richards K., Jonard G., Guilley H., Pleij C. W. Mapping sequences required for productive replication of beet necrotic yellow vein virus RNA 3. Virology. 1990 Sep;178(1):273–280. doi: 10.1016/0042-6822(90)90403-e. [DOI] [PubMed] [Google Scholar]
  11. Kiguchi T., Saito M., Tamada T. Nucleotide sequence analysis of RNA-5 of five isolates of beet necrotic yellow vein virus and the identity of a deletion mutant. J Gen Virol. 1996 Apr;77(Pt 4):575–580. doi: 10.1099/0022-1317-77-4-575. [DOI] [PubMed] [Google Scholar]
  12. Lemaire O., Merdinoglu D., Valentin P., Putz C., Ziegler-Graff V., Guilley H., Jonard G., Richards K. Effect of beet necrotic yellow vein virus RNA composition on transmission by Polymyxa betae. Virology. 1988 Jan;162(1):232–235. doi: 10.1016/0042-6822(88)90412-6. [DOI] [PubMed] [Google Scholar]
  13. Lempereur L., Nicoloso M., Riehl N., Ehresmann C., Ehresmann B., Bachellerie J. P. Conformation of yeast 18S rRNA. Direct chemical probing of the 5' domain in ribosomal subunits and in deproteinized RNA by reverse transcriptase mapping of dimethyl sulfate-accessible. Nucleic Acids Res. 1985 Dec 9;13(23):8339–8357. doi: 10.1093/nar/13.23.8339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pilipenko E. V., Poperechny K. V., Maslova S. V., Melchers W. J., Slot H. J., Agol V. I. Cis-element, oriR, involved in the initiation of (-) strand poliovirus RNA: a quasi-globular multi-domain RNA structure maintained by tertiary ('kissing') interactions. EMBO J. 1996 Oct 1;15(19):5428–5436. [PMC free article] [PubMed] [Google Scholar]
  15. Pogue G. P., Hall T. C. The requirement for a 5' stem-loop structure in brome mosaic virus replication supports a new model for viral positive-strand RNA initiation. J Virol. 1992 Feb;66(2):674–684. doi: 10.1128/jvi.66.2.674-684.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Qu H. L., Michot B., Bachellerie J. P. Improved methods for structure probing in large RNAs: a rapid 'heterologous' sequencing approach is coupled to the direct mapping of nuclease accessible sites. Application to the 5' terminal domain of eukaryotic 28S rRNA. Nucleic Acids Res. 1983 Sep 10;11(17):5903–5920. doi: 10.1093/nar/11.17.5903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Quillet L., Guilley H., Jonard G., Richards K. In vitro synthesis of biologically active beet necrotic yellow vein virus RNA. Virology. 1989 Sep;172(1):293–301. doi: 10.1016/0042-6822(89)90131-1. [DOI] [PubMed] [Google Scholar]
  18. Silberklang M., Gillum A. M., RajBhandary U. L. The use of nuclease P1 in sequence analysis of end group labeled RNA. Nucleic Acids Res. 1977 Dec;4(12):4091–4108. doi: 10.1093/nar/4.12.4091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Torrance L., Mayo M. A. Proposed re-classification of furoviruses. Arch Virol. 1997;142(2):435–439. [PubMed] [Google Scholar]
  20. Vasilenko S. K., Ryte V. C. [Isolation of highly purified ribonuclease from cobra (Naja oxiana) venom]. Biokhimiia. 1975 May-Jun;40(3):578–583. [PubMed] [Google Scholar]
  21. Veidt I., Bouzoubaa S. E., Leiser R. M., Ziegler-Graff V., Guilley H., Richards K., Jonard G. Synthesis of full-length transcripts of beet western yellows virus RNA: messenger properties and biological activity in protoplasts. Virology. 1992 Jan;186(1):192–200. doi: 10.1016/0042-6822(92)90073-x. [DOI] [PubMed] [Google Scholar]
  22. Zhang H., Scholl R., Browse J., Somerville C. Double stranded DNA sequencing as a choice for DNA sequencing. Nucleic Acids Res. 1988 Feb 11;16(3):1220–1220. doi: 10.1093/nar/16.3.1220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Zuker M. On finding all suboptimal foldings of an RNA molecule. Science. 1989 Apr 7;244(4900):48–52. doi: 10.1126/science.2468181. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES