Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Dec 1;25(23):4792–4796. doi: 10.1093/nar/25.23.4792

Information transfer from DNA to peptide nucleic acids by template-directed syntheses.

J G Schmidt 1, L Christensen 1, P E Nielsen 1, L E Orgel 1
PMCID: PMC147107  PMID: 9365258

Abstract

Peptide nucleic acids (PNAs) are analogs of nucleic acids in which the ribose-phosphate backbone is replaced by a backbone held together by amide bonds. PNAs are interesting as models of alternative genetic systems because they form potentially informational base paired helical structures. Oligocytidylates have been shown to act as templates for formation of longer oligomers of G from PNA G2 dimers. In this paper we show that information can be transferred from DNA to PNA. DNA C4T2C4 is an efficient template for synthesis of PNA G4A2G4 using G2 and A2 units as substrates. The corresponding synthesis of PNA G4C2G4 on DNA C4G2C4 is less efficient. Incorporation of PNA T2 into PNA products on DNA C4A2C4 is the least efficient of the three reactions. These results, obtained using PNA dimers as substrates, parallel those obtained using monomeric activated nucleotides.

Full Text

The Full Text of this article is available as a PDF (85.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acevedo O. L., Orgel L. E. Non-enzymatic transcription of an oligodeoxynucleotide 14 residues long. J Mol Biol. 1987 Sep 20;197(2):187–193. doi: 10.1016/0022-2836(87)90117-3. [DOI] [PubMed] [Google Scholar]
  2. Böhler C., Nielsen P. E., Orgel L. E. Template switching between PNA and RNA oligonucleotides. Nature. 1995 Aug 17;376(6541):578–581. doi: 10.1038/376578a0. [DOI] [PubMed] [Google Scholar]
  3. Haertle T., Orgel L. E. Template-directed synthesis on the oligonucleotide d(C7-G-C7). J Mol Biol. 1986 Mar 5;188(1):77–80. doi: 10.1016/0022-2836(86)90482-1. [DOI] [PubMed] [Google Scholar]
  4. Haertle T., Orgel L. E. The template properties of some oligodeoxynucleotides containing cytidine and guanosine. J Mol Evol. 1986;23(2):108–112. doi: 10.1007/BF02099904. [DOI] [PubMed] [Google Scholar]
  5. Hill A. R., Jr, Orgel L. E., Wu T. The limits of template-directed synthesis with nucleoside-5'-phosphoro(2-methyl)imidazolides. Orig Life Evol Biosph. 1993 Dec;23(5-6):285–290. doi: 10.1007/BF01582078. [DOI] [PubMed] [Google Scholar]
  6. Hyrup B., Nielsen P. E. Peptide nucleic acids (PNA): synthesis, properties and potential applications. Bioorg Med Chem. 1996 Jan;4(1):5–23. doi: 10.1016/0968-0896(95)00171-9. [DOI] [PubMed] [Google Scholar]
  7. Inoue T., Joyce G. F., Grzeskowiak K., Orgel L. E., Brown J. M., Reese C. B. Template-directed synthesis on the pentanucleotide CpCpGpCpC. J Mol Biol. 1984 Sep 25;178(3):669–676. doi: 10.1016/0022-2836(84)90244-4. [DOI] [PubMed] [Google Scholar]
  8. Joyce G. F., Inoue T., Orgel L. E. Non-enzymatic template-directed synthesis on RNA random copolymers. Poly(C, U) templates. J Mol Biol. 1984 Jun 25;176(2):279–306. doi: 10.1016/0022-2836(84)90425-x. [DOI] [PubMed] [Google Scholar]
  9. Joyce G. F. Nonenzymatic template-directed synthesis of informational macromolecules. Cold Spring Harb Symp Quant Biol. 1987;52:41–51. doi: 10.1101/sqb.1987.052.01.008. [DOI] [PubMed] [Google Scholar]
  10. Joyce G. F., Schwartz A. W., Miller S. L., Orgel L. E. The case for an ancestral genetic system involving simple analogues of the nucleotides. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4398–4402. doi: 10.1073/pnas.84.13.4398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ng K. E., Orgel L. E. Reaction on alternating GC oligonucleotide templates. J Mol Evol. 1989 Aug;29(2):101–107. doi: 10.1007/BF02100109. [DOI] [PubMed] [Google Scholar]
  12. Nielsen P. E., Egholm M., Berg R. H., Buchardt O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science. 1991 Dec 6;254(5037):1497–1500. doi: 10.1126/science.1962210. [DOI] [PubMed] [Google Scholar]
  13. Schmidt J. G., Nielsen P. E., Orgel L. E. Information transfer from peptide nucleic acids to RNA by template-directed syntheses. Nucleic Acids Res. 1997 Dec 1;25(23):4797–4802. doi: 10.1093/nar/25.23.4797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schmidt J. G., Nielsen P. E., Orgel L. E. Separation of "uncharged" oligodeoxynucleotide analogs by anion-exchange chromatography at high pH. Anal Biochem. 1996 Mar 15;235(2):239–241. doi: 10.1006/abio.1996.0119. [DOI] [PubMed] [Google Scholar]
  15. Wittung P., Nielsen P. E., Buchardt O., Egholm M., Nordén B. DNA-like double helix formed by peptide nucleic acid. Nature. 1994 Apr 7;368(6471):561–563. doi: 10.1038/368561a0. [DOI] [PubMed] [Google Scholar]
  16. Wu T., Orgel L. E. Nonenzymatic template-directed synthesis on hairpin oligonucleotides. 2. Templates containing cytidine and guanosine residues. J Am Chem Soc. 1992;114(14):5496–5501. doi: 10.1021/ja00040a002. [DOI] [PubMed] [Google Scholar]
  17. Wu T., Orgel L. E. Nonenzymatic template-directed synthesis on hairpin oligonucleotides. 3. Incorporation of adenosine and uridine residues. J Am Chem Soc. 1992 Oct 7;114(21):7963–7969. doi: 10.1021/ja00047a001. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES