Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Dec 1;25(23):4771–4777. doi: 10.1093/nar/25.23.4771

Covalent cross-linking of duplex DNA using 4-thio-2'-deoxyuridine as a readily modifiable platform for introduction of reactive functionality into oligonucleotides.

R S Coleman 1, R M Pires 1
PMCID: PMC147117  PMID: 9365255

Abstract

Full details of the template-directed covalent cross-linking of duplex oligodeoxynucleotides are presented. 4-Thio-2'-deoxyuridine was incorporated synthetically into a 17mer oligodeoxynucleotide, and the thiocarbonyl group of the modified base was alkylated with a variety of alpha-bromoacetyl-derivatized diamines. Covalent cross-linking was initiated by annealing the electrophilic probe oligomers with their complementary sequences, where a dG base was targeted at the position complementary to the modified 4-thio-2'-deoxyuridine. The sequence selectivity of cross-link formation as a function of tether topology and rigidity was examined, and the thermal stability of the modified duplexes was measured by UV melting experiments.

Full Text

The Full Text of this article is available as a PDF (132.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belikova A. M., Zarytova V. F., Grineva N. I. Synthesis of ribonucleosides and diribonucleoside phosphates containing 2-chloroethylamine and nitrogen mustard residues. Tetrahedron Lett. 1967 Sep;37:3557–3562. doi: 10.1016/s0040-4039(01)89794-x. [DOI] [PubMed] [Google Scholar]
  2. Creagh F. M., Parkes A. B., Lee A., Adams H., Hall R., Richards C. J., Lazarus J. H. The iodide perchlorate discharge test in women with previous post-partum thyroiditis: relationship to sonographic appearance and thyroid function. Clin Endocrinol (Oxf) 1994 Jun;40(6):765–768. doi: 10.1111/j.1365-2265.1994.tb02510.x. [DOI] [PubMed] [Google Scholar]
  3. Eadie J. S., McBride L. J., Efcavitch J. W., Hoff L. B., Cathcart R. High-performance liquid chromatographic analysis of oligodeoxyribonucleotide base composition. Anal Biochem. 1987 Sep;165(2):442–447. doi: 10.1016/0003-2697(87)90294-6. [DOI] [PubMed] [Google Scholar]
  4. Goodchild J. Conjugates of oligonucleotides and modified oligonucleotides: a review of their synthesis and properties. Bioconjug Chem. 1990 May-Jun;1(3):165–187. doi: 10.1021/bc00003a001. [DOI] [PubMed] [Google Scholar]
  5. Grant K. B., Dervan P. B. Sequence-specific alkylation and cleavage of DNA mediated by purine motif triple helix formation. Biochemistry. 1996 Sep 24;35(38):12313–12319. doi: 10.1021/bi9608469. [DOI] [PubMed] [Google Scholar]
  6. Kido K., Inoue H., Ohtsuka E. Sequence-dependent cleavage of DNA by alkylation with antisense oligodeoxyribonucleotides containing a 2-(N-iodoacetylaminoethyl)thio-adenine. Nucleic Acids Res. 1992 Mar 25;20(6):1339–1344. doi: 10.1093/nar/20.6.1339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Knorre D. G., Vlassov V. V. Complementary-addressed (sequence-specific) modification of nucleic acids. Prog Nucleic Acid Res Mol Biol. 1985;32:291–320. doi: 10.1016/s0079-6603(08)60352-9. [DOI] [PubMed] [Google Scholar]
  8. Knorre D. G., Vlassov V. V. Reactive oligonucleotide derivatives as gene-targeted biologically active compounds and affinity probes. Genetica. 1991;85(1):53–63. doi: 10.1007/BF00056106. [DOI] [PubMed] [Google Scholar]
  9. Kohn K. W., Hartley J. A., Mattes W. B. Mechanisms of DNA sequence selective alkylation of guanine-N7 positions by nitrogen mustards. Nucleic Acids Res. 1987 Dec 23;15(24):10531–10549. doi: 10.1093/nar/15.24.10531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kuimelis R. G., Nambiar K. P. Synthesis of oligodeoxynucleotides containing 2-thiopyrimidine residues--a new protection scheme. Nucleic Acids Res. 1994 Apr 25;22(8):1429–1436. doi: 10.1093/nar/22.8.1429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Marky L. A., Breslauer K. J. Calculating thermodynamic data for transitions of any molecularity from equilibrium melting curves. Biopolymers. 1987 Sep;26(9):1601–1620. doi: 10.1002/bip.360260911. [DOI] [PubMed] [Google Scholar]
  12. Mattes W. B., Hartley J. A., Kohn K. W. DNA sequence selectivity of guanine-N7 alkylation by nitrogen mustards. Nucleic Acids Res. 1986 Apr 11;14(7):2971–2987. doi: 10.1093/nar/14.7.2971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Maxam A. M., Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977 Feb;74(2):560–564. doi: 10.1073/pnas.74.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Summerton J., Bartlett P. A. Sequence-specific crosslinking agents for nucleic acids. Use of 6-bromo-5,5-dimethoxyhexanohydrazide for crosslinking cytidine to guanosine and crosslinking RNA to complementary sequences of DNA. J Mol Biol. 1978 Jun 25;122(2):145–162. doi: 10.1016/0022-2836(78)90032-3. [DOI] [PubMed] [Google Scholar]
  15. Tabone J. C., Stamm M. R., Gamper H. B., Meyer R. B., Jr Factors influencing the extent and regiospecificity of cross-link formation between single-stranded DNA and reactive complementary oligodeoxynucleotides. Biochemistry. 1994 Jan 11;33(1):375–383. doi: 10.1021/bi00167a048. [DOI] [PubMed] [Google Scholar]
  16. Taylor M. J., Dervan P. B. Kinetic analysis of sequence-specific alkylation of DNA by pyrimidine oligodeoxyribonucleotide-directed triple-helix formation. Bioconjug Chem. 1997 May-Jun;8(3):354–364. doi: 10.1021/bc970035x. [DOI] [PubMed] [Google Scholar]
  17. Vlassov V. V., Zarytova V. F., Kutiavin I. V., Mamaev S. V., Podyminogin M. A. Complementary addressed modification and cleavage of a single stranded DNA fragment with alkylating oligonucleotide derivatives. Nucleic Acids Res. 1986 May 27;14(10):4065–4076. doi: 10.1093/nar/14.10.4065. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES