Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Dec 1;25(23):4797–4802. doi: 10.1093/nar/25.23.4797

Information transfer from peptide nucleic acids to RNA by template-directed syntheses.

J G Schmidt 1, P E Nielsen 1, L E Orgel 1
PMCID: PMC147122  PMID: 9365259

Abstract

Peptide nucleic acids (PNAs) are uncharged analogs of DNA and RNA in which the ribose-phosphate backbone is substituted by a backbone held together by amide bonds. PNAs are interesting as models of alternative genetic systems because they form potentially informational base paired helical structures. A PNA C10 oligomer has been shown to act as template for efficient formation of oligoguanylates from activated guanosine ribonucleotides. In a previous paper we used heterosequences of DNA as templates in sequence-dependent polymerization of PNA dimers. In this paper we show that information can be transferred from PNA to RNA. We describe the reactions of activated mononucleotides on heterosequences of PNA. Adenylic, cytidylic and guanylic acids were incorporated into the products opposite their complement on PNA, although less efficiently than on DNA templates.

Full Text

The Full Text of this article is available as a PDF (165.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acevedo O. L., Orgel L. E. Non-enzymatic transcription of an oligodeoxynucleotide 14 residues long. J Mol Biol. 1987 Sep 20;197(2):187–193. doi: 10.1016/0022-2836(87)90117-3. [DOI] [PubMed] [Google Scholar]
  2. Böhler C., Nielsen P. E., Orgel L. E. Template switching between PNA and RNA oligonucleotides. Nature. 1995 Aug 17;376(6541):578–581. doi: 10.1038/376578a0. [DOI] [PubMed] [Google Scholar]
  3. Christensen L., Fitzpatrick R., Gildea B., Petersen K. H., Hansen H. F., Koch T., Egholm M., Buchardt O., Nielsen P. E., Coull J. Solid-phase synthesis of peptide nucleic acids. J Pept Sci. 1995 May-Jun;1(3):175–183. doi: 10.1002/psc.310010304. [DOI] [PubMed] [Google Scholar]
  4. Chu B. C., Orgel L. E. Preparation of ligation intermediates and related polynucleotide pyrophosphates. Biochim Biophys Acta. 1984 May 15;782(1):103–105. doi: 10.1016/0167-4781(84)90111-8. [DOI] [PubMed] [Google Scholar]
  5. Haertle T., Orgel L. E. Template-directed synthesis on the oligonucleotide d(C7-G-C7). J Mol Biol. 1986 Mar 5;188(1):77–80. doi: 10.1016/0022-2836(86)90482-1. [DOI] [PubMed] [Google Scholar]
  6. Haertle T., Orgel L. E. The template properties of some oligodeoxynucleotides containing cytidine and guanosine. J Mol Evol. 1986;23(2):108–112. doi: 10.1007/BF02099904. [DOI] [PubMed] [Google Scholar]
  7. Hyrup B., Nielsen P. E. Peptide nucleic acids (PNA): synthesis, properties and potential applications. Bioorg Med Chem. 1996 Jan;4(1):5–23. doi: 10.1016/0968-0896(95)00171-9. [DOI] [PubMed] [Google Scholar]
  8. Inoue T., Joyce G. F., Grzeskowiak K., Orgel L. E., Brown J. M., Reese C. B. Template-directed synthesis on the pentanucleotide CpCpGpCpC. J Mol Biol. 1984 Sep 25;178(3):669–676. doi: 10.1016/0022-2836(84)90244-4. [DOI] [PubMed] [Google Scholar]
  9. Joyce G. F. Nonenzymatic template-directed synthesis of informational macromolecules. Cold Spring Harb Symp Quant Biol. 1987;52:41–51. doi: 10.1101/sqb.1987.052.01.008. [DOI] [PubMed] [Google Scholar]
  10. Joyce G. F., Schwartz A. W., Miller S. L., Orgel L. E. The case for an ancestral genetic system involving simple analogues of the nucleotides. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4398–4402. doi: 10.1073/pnas.84.13.4398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nielsen P. E., Egholm M., Berg R. H., Buchardt O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science. 1991 Dec 6;254(5037):1497–1500. doi: 10.1126/science.1962210. [DOI] [PubMed] [Google Scholar]
  12. Schmidt J. G., Christensen L., Nielsen P. E., Orgel L. E. Information transfer from DNA to peptide nucleic acids by template-directed syntheses. Nucleic Acids Res. 1997 Dec 1;25(23):4792–4796. doi: 10.1093/nar/25.23.4792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schmidt J. G., Nielsen P. E., Orgel L. E. Enantiomeric cross-inhibition in the synthesis of oligonucleotides on a nonchiral template. J Am Chem Soc. 1997 Feb 12;119(6):1494–1495. doi: 10.1021/ja963563c. [DOI] [PubMed] [Google Scholar]
  14. Wittung P., Nielsen P. E., Buchardt O., Egholm M., Nordén B. DNA-like double helix formed by peptide nucleic acid. Nature. 1994 Apr 7;368(6471):561–563. doi: 10.1038/368561a0. [DOI] [PubMed] [Google Scholar]
  15. Wu T., Orgel L. E. Nonenzymatic template-directed synthesis on hairpin oligonucleotides. 2. Templates containing cytidine and guanosine residues. J Am Chem Soc. 1992;114(14):5496–5501. doi: 10.1021/ja00040a002. [DOI] [PubMed] [Google Scholar]
  16. Wu T., Orgel L. E. Nonenzymatic template-directed synthesis on hairpin oligonucleotides. 3. Incorporation of adenosine and uridine residues. J Am Chem Soc. 1992 Oct 7;114(21):7963–7969. doi: 10.1021/ja00047a001. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES