Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Dec 15;25(24):4933–4939. doi: 10.1093/nar/25.24.4933

Characterization of the TATA-less core promoter of the cell cycle-regulated cdc25C gene.

K Körner 1, L A Wolfraim 1, F C Lucibello 1, R Müller 1
PMCID: PMC147129  PMID: 9396799

Abstract

The TATA- and Inr-less promoter of the human cdc25C gene is regulated during the cell cycle through binding of a repressor to two contiguous promoter-proximal elements, the CDE and CHR. In this study we have characterized in detail the region of the cdc25C promoter immediately downstream of these elements. Several lines of evidence suggest that this region of approximately 60 bp acts as the core promoter. This sequence: (i) harbors most of the transcription initiation sites; (ii) possesses basal promoter activity in vivo ; (iii) shows no stable protein binding in vivo as indicated by genomic dimethyl sulfate and phenanthroline copper footprinting; (iv) contains single-stranded regions in vivo as shown by potassium permanganate footprinting; (v) is hypersensitive to DNase I cleavage in permeabilized cells. Mutational analysis of the core promoter revealed the presence of three sites which play a role in transcription. Two of these sites were found to represent low affinity binding sites for transcription factors of the Sp1 family. Mutation of these sites led to decreased levels of transcription, while their alteration to canonical Sp1 sites impaired cell cycle regulation. Thus the transient interaction of Sp1 with the core promoter appears to be necessary for maximal transcription without perturbing cell cycle regulation.

Full Text

The Full Text of this article is available as a PDF (365.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert T., Mautner J., Funk J. O., Hörtnagel K., Pullner A., Eick D. Nucleosomal structures of c-myc promoters with transcriptionally engaged RNA polymerase II. Mol Cell Biol. 1997 Aug;17(8):4363–4371. doi: 10.1128/mcb.17.8.4363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chiang C. M., Roeder R. G. Cloning of an intrinsic human TFIID subunit that interacts with multiple transcriptional activators. Science. 1995 Jan 27;267(5197):531–536. doi: 10.1126/science.7824954. [DOI] [PubMed] [Google Scholar]
  3. Coustry F., Maity S. N., de Crombrugghe B. Studies on transcription activation by the multimeric CCAAT-binding factor CBF. J Biol Chem. 1995 Jan 6;270(1):468–475. doi: 10.1074/jbc.270.1.468. [DOI] [PubMed] [Google Scholar]
  4. Dennig J., Hagen G., Beato M., Suske G. Members of the Sp transcription factor family control transcription from the uteroglobin promoter. J Biol Chem. 1995 May 26;270(21):12737–12744. doi: 10.1074/jbc.270.21.12737. [DOI] [PubMed] [Google Scholar]
  5. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dikstein R., Zhou S., Tjian R. Human TAFII 105 is a cell type-specific TFIID subunit related to hTAFII130. Cell. 1996 Oct 4;87(1):137–146. doi: 10.1016/s0092-8674(00)81330-6. [DOI] [PubMed] [Google Scholar]
  7. Dusing M. R., Wiginton D. A. Sp1 is essential for both enhancer-mediated and basal activation of the TATA-less human adenosine deaminase promoter. Nucleic Acids Res. 1994 Feb 25;22(4):669–677. doi: 10.1093/nar/22.4.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dynan W. S., Tjian R. Isolation of transcription factors that discriminate between different promoters recognized by RNA polymerase II. Cell. 1983 Mar;32(3):669–680. doi: 10.1016/0092-8674(83)90053-3. [DOI] [PubMed] [Google Scholar]
  9. Engeland K., Andrews N. C., Mathey-Prevot B. Multiple proteins interact with the nuclear inhibitory protein repressor element in the human interleukin-3 promoter. J Biol Chem. 1995 Oct 13;270(41):24572–24579. doi: 10.1074/jbc.270.41.24572. [DOI] [PubMed] [Google Scholar]
  10. Fromont-Racine M., Bertrand E., Pictet R., Grange T. A highly sensitive method for mapping the 5' termini of mRNAs. Nucleic Acids Res. 1993 Apr 11;21(7):1683–1684. doi: 10.1093/nar/21.7.1683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ge H., Roeder R. G. Purification, cloning, and characterization of a human coactivator, PC4, that mediates transcriptional activation of class II genes. Cell. 1994 Aug 12;78(3):513–523. doi: 10.1016/0092-8674(94)90428-6. [DOI] [PubMed] [Google Scholar]
  12. Giardina C., Pérez-Riba M., Lis J. T. Promoter melting and TFIID complexes on Drosophila genes in vivo. Genes Dev. 1992 Nov;6(11):2190–2200. doi: 10.1101/gad.6.11.2190. [DOI] [PubMed] [Google Scholar]
  13. Good L., Nazar R. N. An improved thermal cycle for two-step PCR-based targeted mutagenesis. Nucleic Acids Res. 1992 Sep 25;20(18):4934–4934. doi: 10.1093/nar/20.18.4934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Herber B., Truss M., Beato M., Müller R. Inducible regulatory elements in the human cyclin D1 promoter. Oncogene. 1994 Apr;9(4):1295–1304. [PubMed] [Google Scholar]
  15. Hoey T., Weinzierl R. O., Gill G., Chen J. L., Dynlacht B. D., Tjian R. Molecular cloning and functional analysis of Drosophila TAF110 reveal properties expected of coactivators. Cell. 1993 Jan 29;72(2):247–260. doi: 10.1016/0092-8674(93)90664-c. [DOI] [PubMed] [Google Scholar]
  16. Hoffmann I., Clarke P. R., Marcote M. J., Karsenti E., Draetta G. Phosphorylation and activation of human cdc25-C by cdc2--cyclin B and its involvement in the self-amplification of MPF at mitosis. EMBO J. 1993 Jan;12(1):53–63. doi: 10.1002/j.1460-2075.1993.tb05631.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kretzschmar M., Kaiser K., Lottspeich F., Meisterernst M. A novel mediator of class II gene transcription with homology to viral immediate-early transcriptional regulators. Cell. 1994 Aug 12;78(3):525–534. doi: 10.1016/0092-8674(94)90429-4. [DOI] [PubMed] [Google Scholar]
  18. Krumm A., Meulia T., Brunvand M., Groudine M. The block to transcriptional elongation within the human c-myc gene is determined in the promoter-proximal region. Genes Dev. 1992 Nov;6(11):2201–2213. doi: 10.1101/gad.6.11.2201. [DOI] [PubMed] [Google Scholar]
  19. Lew D. J., Kornbluth S. Regulatory roles of cyclin dependent kinase phosphorylation in cell cycle control. Curr Opin Cell Biol. 1996 Dec;8(6):795–804. doi: 10.1016/s0955-0674(96)80080-9. [DOI] [PubMed] [Google Scholar]
  20. Liao W. C., Ash J., Johnson L. F. Bidirectional promoter of the mouse thymidylate synthase gene. Nucleic Acids Res. 1994 Oct 11;22(20):4044–4049. doi: 10.1093/nar/22.20.4044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lu J., Lee W., Jiang C., Keller E. B. Start site selection by Sp1 in the TATA-less human Ha-ras promoter. J Biol Chem. 1994 Feb 18;269(7):5391–5402. [PubMed] [Google Scholar]
  22. Lucibello F. C., Truss M., Zwicker J., Ehlert F., Beato M., Müller R. Periodic cdc25C transcription is mediated by a novel cell cycle-regulated repressor element (CDE). EMBO J. 1995 Jan 3;14(1):132–142. doi: 10.1002/j.1460-2075.1995.tb06983.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mantovani R., Pessara U., Tronche F., Li X. Y., Knapp A. M., Pasquali J. L., Benoist C., Mathis D. Monoclonal antibodies to NF-Y define its function in MHC class II and albumin gene transcription. EMBO J. 1992 Sep;11(9):3315–3322. doi: 10.1002/j.1460-2075.1992.tb05410.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nordeen S. K. Luciferase reporter gene vectors for analysis of promoters and enhancers. Biotechniques. 1988 May;6(5):454–458. [PubMed] [Google Scholar]
  25. Pfeifer G. P., Steigerwald S. D., Mueller P. R., Wold B., Riggs A. D. Genomic sequencing and methylation analysis by ligation mediated PCR. Science. 1989 Nov 10;246(4931):810–813. doi: 10.1126/science.2814502. [DOI] [PubMed] [Google Scholar]
  26. Pugh B. F., Tjian R. Transcription from a TATA-less promoter requires a multisubunit TFIID complex. Genes Dev. 1991 Nov;5(11):1935–1945. doi: 10.1101/gad.5.11.1935. [DOI] [PubMed] [Google Scholar]
  27. Sadhu K., Reed S. I., Richardson H., Russell P. Human homolog of fission yeast cdc25 mitotic inducer is predominantly expressed in G2. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5139–5143. doi: 10.1073/pnas.87.13.5139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sasse-Dwight S., Gralla J. D. KMnO4 as a probe for lac promoter DNA melting and mechanism in vivo. J Biol Chem. 1989 May 15;264(14):8074–8081. [PubMed] [Google Scholar]
  29. Seto E., Shi Y., Shenk T. YY1 is an initiator sequence-binding protein that directs and activates transcription in vitro. Nature. 1991 Nov 21;354(6350):241–245. doi: 10.1038/354241a0. [DOI] [PubMed] [Google Scholar]
  30. Usheva A., Shenk T. TATA-binding protein-independent initiation: YY1, TFIIB, and RNA polymerase II direct basal transcription on supercoiled template DNA. Cell. 1994 Mar 25;76(6):1115–1121. doi: 10.1016/0092-8674(94)90387-5. [DOI] [PubMed] [Google Scholar]
  31. Weis L., Reinberg D. Transcription by RNA polymerase II: initiator-directed formation of transcription-competent complexes. FASEB J. 1992 Nov;6(14):3300–3309. doi: 10.1096/fasebj.6.14.1426767. [DOI] [PubMed] [Google Scholar]
  32. Withers D. A., Harvey R. C., Faust J. B., Melnyk O., Carey K., Meeker T. C. Characterization of a candidate bcl-1 gene. Mol Cell Biol. 1991 Oct;11(10):4846–4853. doi: 10.1128/mcb.11.10.4846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zhang L., Gralla J. D. In situ nucleoprotein structure at the SV40 major late promoter: melted and wrapped DNA flank the start site. Genes Dev. 1989 Nov;3(11):1814–1822. doi: 10.1101/gad.3.11.1814. [DOI] [PubMed] [Google Scholar]
  34. Zwicker J., Gross C., Lucibello F. C., Truss M., Ehlert F., Engeland K., Müller R. Cell cycle regulation of cdc25C transcription is mediated by the periodic repression of the glutamine-rich activators NF-Y and Sp1. Nucleic Acids Res. 1995 Oct 11;23(19):3822–3830. doi: 10.1093/nar/23.19.3822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zwicker J., Liu N., Engeland K., Lucibello F. C., Müller R. Cell cycle regulation of E2F site occupation in vivo. Science. 1996 Mar 15;271(5255):1595–1597. doi: 10.1126/science.271.5255.1595. [DOI] [PubMed] [Google Scholar]
  36. Zwicker J., Lucibello F. C., Wolfraim L. A., Gross C., Truss M., Engeland K., Müller R. Cell cycle regulation of the cyclin A, cdc25C and cdc2 genes is based on a common mechanism of transcriptional repression. EMBO J. 1995 Sep 15;14(18):4514–4522. doi: 10.1002/j.1460-2075.1995.tb00130.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zwicker J., Müller R. Cell-cycle regulation of gene expression by transcriptional repression. Trends Genet. 1997 Jan;13(1):3–6. doi: 10.1016/s0168-9525(96)30112-1. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES