Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Dec 15;25(24):5041–5046. doi: 10.1093/nar/25.24.5041

Identification of DNA replication and cell cycle proteins that interact with PCNA.

G Loor 1, S J Zhang 1, P Zhang 1, N L Toomey 1, M Y Lee 1
PMCID: PMC147130  PMID: 9396813

Abstract

The identity of DNA replication proteins and cell cycle regulatory proteins which can be found in complexes involving PCNA were investigated by the use of PCNA immobilized on Sepharose 4B. A column containing bovine serum albumin (BSA) bound to Sepharose was used as a control. Fetal calf thymus extracts were chromatographed on PCNA-Sepharose and BSA-Sepharose. The columns were washed and then eluted with 0.5 M KCl. The salt eluates were examined for the presence of both DNA replication proteins (Pol alpha, delta, straightepsilon, PCNA, RFC, RFA, DNA ligase I, NDH II, Topo I and Topo II) and cell cycle proteins (Cyclins A, B1, D1, D2, D3, E, CDK2, CDK4, CDK5 and p21) by western blotting with specific antibodies. The DNA replication proteins which bound to PCNA-Sepharose included DNA polymerase delta and straightepsilon, PCNA, the 37 and 40 kDa subunits of RFC, the 70 kDa subunit of RPA, NDH II and topoisomerase I. No evidence for the binding of DNA polymerase alpha, DNA ligase I or topoisomerase II was obtained. Of the cell cycle proteins investigated, CDK2, CDK4 and CDK5 were bound. This study presents strong evidence that PCNA is a component of protein complexes containing DNA replication, repair and cell cycle regulatory proteins.

Full Text

The Full Text of this article is available as a PDF (103.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Applegren N., Hickey R. J., Kleinschmidt A. M., Zhou Q., Coll J., Wills P., Swaby R., Wei Y., Quan J. Y., Lee M. Y. Further characterization of the human cell multiprotein DNA replication complex. J Cell Biochem. 1995 Sep;59(1):91–107. doi: 10.1002/jcb.240590111. [DOI] [PubMed] [Google Scholar]
  2. Burgers P. M. Saccharomyces cerevisiae replication factor C. II. Formation and activity of complexes with the proliferating cell nuclear antigen and with DNA polymerases delta and epsilon. J Biol Chem. 1991 Nov 25;266(33):22698–22706. [PubMed] [Google Scholar]
  3. Cao Q. P., McGrath C. A., Baril E. F., Quesenberry P. J., Reddy G. P. The 68 kDa calmodulin-binding protein is tightly associated with the multiprotein DNA polymerase alpha-primase complex in HeLa cells. Biochemistry. 1995 Mar 28;34(12):3878–3883. doi: 10.1021/bi00012a002. [DOI] [PubMed] [Google Scholar]
  4. Chen M., Pan Z. Q., Hurwitz J. Studies of the cloned 37-kDa subunit of activator 1 (replication factor C) of HeLa cells. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5211–5215. doi: 10.1073/pnas.89.12.5211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chui G., Linn S. Further characterization of HeLa DNA polymerase epsilon. J Biol Chem. 1995 Apr 7;270(14):7799–7808. doi: 10.1074/jbc.270.14.7799. [DOI] [PubMed] [Google Scholar]
  6. Cripps-Wolfman J., Henshaw E. C., Bambara R. A. Alterations in the phosphorylation and activity of DNA polymerase alpha correlate with the change in replicative DNA synthesis as quiescent cells re-enter the cell cycle. J Biol Chem. 1989 Nov 25;264(33):19478–19486. [PubMed] [Google Scholar]
  7. D'Urso G., Marraccino R. L., Marshak D. R., Roberts J. M. Cell cycle control of DNA replication by a homologue from human cells of the p34cdc2 protein kinase. Science. 1990 Nov 9;250(4982):786–791. doi: 10.1126/science.2173140. [DOI] [PubMed] [Google Scholar]
  8. Dutta A., Stillman B. cdc2 family kinases phosphorylate a human cell DNA replication factor, RPA, and activate DNA replication. EMBO J. 1992 Jun;11(6):2189–2199. doi: 10.1002/j.1460-2075.1992.tb05278.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Formosa T., Barry J., Alberts B. M., Greenblatt J. Using protein affinity chromatography to probe structure of protein machines. Methods Enzymol. 1991;208:24–45. doi: 10.1016/0076-6879(91)08005-3. [DOI] [PubMed] [Google Scholar]
  10. Fotedar A., Cannella D., Fitzgerald P., Rousselle T., Gupta S., Dorée M., Fotedar R. Role for cyclin A-dependent kinase in DNA replication in human S phase cell extracts. J Biol Chem. 1996 Dec 6;271(49):31627–31637. doi: 10.1074/jbc.271.49.31627. [DOI] [PubMed] [Google Scholar]
  11. Fotedar R., Roberts J. M. Cell cycle regulated phosphorylation of RPA-32 occurs within the replication initiation complex. EMBO J. 1992 Jun;11(6):2177–2187. doi: 10.1002/j.1460-2075.1992.tb05277.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gibbs E., Pan Z. Q., Niu H., Hurwitz J. Studies on the in vitro phosphorylation of HSSB-p34 and -p107 by cyclin-dependent kinases. Cyclin-substrate interactions dictate the efficiency of phosphorylation. J Biol Chem. 1996 Sep 13;271(37):22847–22854. doi: 10.1074/jbc.271.37.22847. [DOI] [PubMed] [Google Scholar]
  13. Gulbis J. M., Kelman Z., Hurwitz J., O'Donnell M., Kuriyan J. Structure of the C-terminal region of p21(WAF1/CIP1) complexed with human PCNA. Cell. 1996 Oct 18;87(2):297–306. doi: 10.1016/s0092-8674(00)81347-1. [DOI] [PubMed] [Google Scholar]
  14. Hurwitz J., Dean F. B., Kwong A. D., Lee S. H. The in vitro replication of DNA containing the SV40 origin. J Biol Chem. 1990 Oct 25;265(30):18043–18046. [PubMed] [Google Scholar]
  15. Kenny M. K., Schlegel U., Furneaux H., Hurwitz J. The role of human single-stranded DNA binding protein and its individual subunits in simian virus 40 DNA replication. J Biol Chem. 1990 May 5;265(13):7693–7700. [PubMed] [Google Scholar]
  16. Krude T., Jackman M., Pines J., Laskey R. A. Cyclin/Cdk-dependent initiation of DNA replication in a human cell-free system. Cell. 1997 Jan 10;88(1):109–119. doi: 10.1016/s0092-8674(00)81863-2. [DOI] [PubMed] [Google Scholar]
  17. Kuriyan J., O'Donnell M. Sliding clamps of DNA polymerases. J Mol Biol. 1993 Dec 20;234(4):915–925. doi: 10.1006/jmbi.1993.1644. [DOI] [PubMed] [Google Scholar]
  18. Lee M. Y., Tan C. K., Downey K. M., So A. G. Further studies on calf thymus DNA polymerase delta purified to homogeneity by a new procedure. Biochemistry. 1984 Apr 24;23(9):1906–1913. doi: 10.1021/bi00304a003. [DOI] [PubMed] [Google Scholar]
  19. Lee M. Y., Toomey N. L. Human placental DNA polymerase delta: identification of a 170-kilodalton polypeptide by activity staining and immunoblotting. Biochemistry. 1987 Feb 24;26(4):1076–1085. doi: 10.1021/bi00378a014. [DOI] [PubMed] [Google Scholar]
  20. Lee S. H., Hurwitz J. Mechanism of elongation of primed DNA by DNA polymerase delta, proliferating cell nuclear antigen, and activator 1. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5672–5676. doi: 10.1073/pnas.87.15.5672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lee S. H., Pan Z. Q., Kwong A. D., Burgers P. M., Hurwitz J. Synthesis of DNA by DNA polymerase epsilon in vitro. J Biol Chem. 1991 Nov 25;266(33):22707–22717. [PubMed] [Google Scholar]
  22. Li X., Tan C. K., So A. G., Downey K. M. Purification and characterization of delta helicase from fetal calf thymus. Biochemistry. 1992 Apr 7;31(13):3507–3513. doi: 10.1021/bi00128a027. [DOI] [PubMed] [Google Scholar]
  23. MacNeill S. A., Moreno S., Reynolds N., Nurse P., Fantes P. A. The fission yeast Cdc1 protein, a homologue of the small subunit of DNA polymerase delta, binds to Pol3 and Cdc27. EMBO J. 1996 Sep 2;15(17):4613–4628. [PMC free article] [PubMed] [Google Scholar]
  24. Nasheuer H. P., Moore A., Wahl A. F., Wang T. S. Cell cycle-dependent phosphorylation of human DNA polymerase alpha. J Biol Chem. 1991 Apr 25;266(12):7893–7903. [PubMed] [Google Scholar]
  25. Navas T. A., Zhou Z., Elledge S. J. DNA polymerase epsilon links the DNA replication machinery to the S phase checkpoint. Cell. 1995 Jan 13;80(1):29–39. doi: 10.1016/0092-8674(95)90448-4. [DOI] [PubMed] [Google Scholar]
  26. Nishida C., Reinhard P., Linn S. DNA repair synthesis in human fibroblasts requires DNA polymerase delta. J Biol Chem. 1988 Jan 5;263(1):501–510. [PubMed] [Google Scholar]
  27. Norbury C., Nurse P. Animal cell cycles and their control. Annu Rev Biochem. 1992;61:441–470. doi: 10.1146/annurev.bi.61.070192.002301. [DOI] [PubMed] [Google Scholar]
  28. Pan Z. Q., Chen M., Hurwitz J. The subunits of activator 1 (replication factor C) carry out multiple functions essential for proliferating-cell nuclear antigen-dependent DNA synthesis. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):6–10. doi: 10.1073/pnas.90.1.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pan Z. Q., Park C. H., Amin A. A., Hurwitz J., Sancar A. Phosphorylated and unphosphorylated forms of human single-stranded DNA-binding protein are equally active in simian virus 40 DNA replication and in nucleotide excision repair. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4636–4640. doi: 10.1073/pnas.92.10.4636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pan Z. Q., Reardon J. T., Li L., Flores-Rozas H., Legerski R., Sancar A., Hurwitz J. Inhibition of nucleotide excision repair by the cyclin-dependent kinase inhibitor p21. J Biol Chem. 1995 Sep 15;270(37):22008–22016. doi: 10.1074/jbc.270.37.22008. [DOI] [PubMed] [Google Scholar]
  31. Pines J. Cell cycle. p21 inhibits cyclin shock. Nature. 1994 Jun 16;369(6481):520–521. doi: 10.1038/369520a0. [DOI] [PubMed] [Google Scholar]
  32. Prelich G., Tan C. K., Kostura M., Mathews M. B., So A. G., Downey K. M., Stillman B. Functional identity of proliferating cell nuclear antigen and a DNA polymerase-delta auxiliary protein. Nature. 1987 Apr 2;326(6112):517–520. doi: 10.1038/326517a0. [DOI] [PubMed] [Google Scholar]
  33. Siegal G., Turchi J. J., Myers T. W., Bambara R. A. A 5' to 3' exonuclease functionally interacts with calf DNA polymerase epsilon. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9377–9381. doi: 10.1073/pnas.89.20.9377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tang H., Gaietta G. M., Fischer W. H., Ellisman M. H., Wong-Staal F. A cellular cofactor for the constitutive transport element of type D retrovirus. Science. 1997 May 30;276(5317):1412–1415. doi: 10.1126/science.276.5317.1412. [DOI] [PubMed] [Google Scholar]
  35. Tsurimoto T., Melendy T., Stillman B. Sequential initiation of lagging and leading strand synthesis by two different polymerase complexes at the SV40 DNA replication origin. Nature. 1990 Aug 9;346(6284):534–539. doi: 10.1038/346534a0. [DOI] [PubMed] [Google Scholar]
  36. Tsurimoto T., Stillman B. Purification of a cellular replication factor, RF-C, that is required for coordinated synthesis of leading and lagging strands during simian virus 40 DNA replication in vitro. Mol Cell Biol. 1989 Feb;9(2):609–619. doi: 10.1128/mcb.9.2.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tuteja N., Ochem A., Taneja P., Tuteja R., Skopác D., Falaschi A. Purification and properties of human DNA helicase VI. Nucleic Acids Res. 1995 Jul 11;23(13):2457–2463. doi: 10.1093/nar/23.13.2457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Waga S., Stillman B. Anatomy of a DNA replication fork revealed by reconstitution of SV40 DNA replication in vitro. Nature. 1994 May 19;369(6477):207–212. doi: 10.1038/369207a0. [DOI] [PubMed] [Google Scholar]
  39. Wang J. C. DNA topoisomerases. Annu Rev Biochem. 1985;54:665–697. doi: 10.1146/annurev.bi.54.070185.003313. [DOI] [PubMed] [Google Scholar]
  40. Warbrick E., Lane D. P., Glover D. M., Cox L. S. Homologous regions of Fen1 and p21Cip1 compete for binding to the same site on PCNA: a potential mechanism to co-ordinate DNA replication and repair. Oncogene. 1997 May 15;14(19):2313–2321. doi: 10.1038/sj.onc.1201072. [DOI] [PubMed] [Google Scholar]
  41. Weiser T., Gassmann M., Thömmes P., Ferrari E., Hafkemeyer P., Hübscher U. Biochemical and functional comparison of DNA polymerases alpha, delta, and epsilon from calf thymus. J Biol Chem. 1991 Jun 5;266(16):10420–10428. [PubMed] [Google Scholar]
  42. Wu Y., Hickey R., Lawlor K., Wills P., Yu F., Ozer H., Starr R., Quan J. Y., Lee M., Malkas L. A 17S multiprotein form of murine cell DNA polymerase mediates polyomavirus DNA replication in vitro. J Cell Biochem. 1994 Jan;54(1):32–46. doi: 10.1002/jcb.240540105. [DOI] [PubMed] [Google Scholar]
  43. Xiong Y., Zhang H., Beach D. D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell. 1992 Oct 30;71(3):505–514. doi: 10.1016/0092-8674(92)90518-h. [DOI] [PubMed] [Google Scholar]
  44. Xiong Y., Zhang H., Beach D. Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation. Genes Dev. 1993 Aug;7(8):1572–1583. doi: 10.1101/gad.7.8.1572. [DOI] [PubMed] [Google Scholar]
  45. Yang L., Wold M. S., Li J. J., Kelly T. J., Liu L. F. Roles of DNA topoisomerases in simian virus 40 DNA replication in vitro. Proc Natl Acad Sci U S A. 1987 Feb;84(4):950–954. doi: 10.1073/pnas.84.4.950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Zeng X. R., Hao H., Jiang Y., Lee M. Y. Regulation of human DNA polymerase delta during the cell cycle. J Biol Chem. 1994 Sep 30;269(39):24027–24033. [PubMed] [Google Scholar]
  47. Zeng X. R., Jiang Y., Zhang S. J., Hao H., Lee M. Y. DNA polymerase delta is involved in the cellular response to UV damage in human cells. J Biol Chem. 1994 May 13;269(19):13748–13751. [PubMed] [Google Scholar]
  48. Zhang P., Zhang S. J., Zhang Z., Woessner J. F., Jr, Lee M. Y. Expression and physicochemical characterization of human proliferating cell nuclear antigen. Biochemistry. 1995 Aug 29;34(34):10703–10712. doi: 10.1021/bi00034a002. [DOI] [PubMed] [Google Scholar]
  49. Zhang S., Grosse F. Domain structure of human nuclear DNA helicase II (RNA helicase A). J Biol Chem. 1997 Apr 25;272(17):11487–11494. doi: 10.1074/jbc.272.17.11487. [DOI] [PubMed] [Google Scholar]
  50. Zhang S., Grosse F. Nuclear DNA helicase II unwinds both DNA and RNA. Biochemistry. 1994 Apr 5;33(13):3906–3912. doi: 10.1021/bi00179a016. [DOI] [PubMed] [Google Scholar]
  51. Zlotkin T., Kaufmann G., Jiang Y., Lee M. Y., Uitto L., Syväoja J., Dornreiter I., Fanning E., Nethanel T. DNA polymerase epsilon may be dispensable for SV40- but not cellular-DNA replication. EMBO J. 1996 May 1;15(9):2298–2305. [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES